首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24367篇
  免费   4223篇
  国内免费   7782篇
安全科学   4397篇
废物处理   483篇
环保管理   2246篇
综合类   19970篇
基础理论   3602篇
污染及防治   1085篇
评价与监测   1731篇
社会与环境   1820篇
灾害及防治   1038篇
  2024年   240篇
  2023年   654篇
  2022年   1776篇
  2021年   1808篇
  2020年   2237篇
  2019年   1462篇
  2018年   1367篇
  2017年   1529篇
  2016年   1298篇
  2015年   1653篇
  2014年   1461篇
  2013年   1930篇
  2012年   2420篇
  2011年   2317篇
  2010年   2160篇
  2009年   1976篇
  2008年   1814篇
  2007年   1796篇
  2006年   1774篇
  2005年   1305篇
  2004年   898篇
  2003年   620篇
  2002年   586篇
  2001年   476篇
  2000年   392篇
  1999年   220篇
  1998年   57篇
  1997年   31篇
  1996年   33篇
  1995年   22篇
  1994年   21篇
  1993年   9篇
  1992年   20篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   
22.
基于不同废污泥源的短程反硝化快速启动及稳定性   总被引:1,自引:1,他引:0  
张星星  王超超  王垚  徐乐中  吴鹏 《环境科学》2020,41(8):3715-3724
为探究不同废污泥源快速启动短程反硝化和实现稳定NO_2~--N积累的可行性,在3个完全相同的SBR反应器(S1、S2和S3)分别接种:实验室城市污水反硝化除磷系统排泥、城市污水厂剩余污泥及河涌底泥,比较其短程反硝化启动快慢和NO_2~--N积累特性,考察系统短程反硝化活性和NO_3~--N→NO_2~--N转化性能,并从微生物学角度分析反应器功能菌群特征.结果表明,在乙酸钠为唯一碳源、高碱度和适宜COD/NO_3~--N比进水条件下,3个SBR短程反硝化反应器在短时间内均能够成功启动,系统平均NO_3~--N→NO_2~--N转化率为S1 S2 S3(75. 92% 73. 36% 69. 90%).同时发现持续低温条件下S1和S2呈现不同程度的短程反硝化性能恶化趋势,但S3能够稳定维持良好NO_2~--N积累性能.微生物高通量测序表明,变形菌门和拟杆菌门居PD系统主导地位,3个短程反硝化反应器NO_2~--N积累关键功能菌属Thauera属丰度差异明显:S3 S1 S2(25. 09% 4. 71% 3. 60%),表明S3具备稳定高效的NO_2~--N积累性能,同时高丰度Thauera属可能是维持低温短程反硝化活性的重要原因.  相似文献   
23.
为探究土地整治对重金属污染环境下土壤理化性质及其中微生物的影响,本文基于Illumina高通量测序技术,对比分析了工业区周边土地整治区内外的土壤微生物群落结构和多样性.结果表明:①从土壤性质来看,土地整治区重金属污染状况和土壤质量均优于非整治区.②从土壤微生物群落结构来看,水田土壤微生物群落主要的菌门为变形菌门、绿弯菌门、酸杆菌门,而土地整治可能降低了变形菌门相对丰度,提高了绿弯菌门和酸杆菌门的相对丰度,同时在属水平上也提高了鞘脂单胞菌属、地杆菌属的相对丰度.③从土壤微生物多样性来看,土地整治区中土壤微生物多样性和功能性明显得到改善,但随着重金属污染程度的升高,改善效果逐渐减弱.④Spearman相关性分析表明,Cd、Hg、Pb、pH、AP是影响微生物群落的主要环境因子,而硫杆菌属、芽孢杆菌属、鞘脂单胞菌属与多种重金属元素表现出显著的正相关关系.本研究证实了土地整治有助于改善土壤微生物多样性和功能性,并提升土壤质量.  相似文献   
24.
地表直接径流和基流均是流域非点源氮/磷养分输出的重要水文途径.科学认识和定量模拟基流氮/磷养分输出对于准确解析水源地水体非点源污染来源至关重要.基于Load Estimator模型和数字滤波算法,建立了定量水源地基流氮素输出的方法体系.以浙江省珊溪水源地的玉泉溪流域为例,利用玉泉溪2010-01—2013-12期间逐月总氮(TN)水质监测数据和逐日流量数据,展示了该方法的计算过程.结果表明,本文建立的水源地基流氮素输出定量方法结果合理,模拟精度高,决定系数和纳什系数分别为0.83和0.80;玉泉溪流域2010—2013年TN负荷量为141.21~274.68 t·a~(-1),平均208.63 t·a~(-1),年基流TN负荷量为84.39~168.68 t·a~(-1),平均127.69 t·a~(-1);基流对玉泉溪年均TN负荷量贡献率高达60%以上,流域基流养分输出对地表水体的污染应引起足够重视.  相似文献   
25.
在一台满足国Ⅴ排放标准的双喷射(气口喷射+缸内直喷)汽油机上开展了燃用E10乙醇汽油(乙醇体积比为10%)对发动机非常规排放特性影响的试验研究.使用傅里叶变换红外分析仪(FTIR)测量了饱和烃、不饱和烃、芳香烃及醇、醛等非常规污染物排放量,对比分析了双喷射模式时各工况下E0和E10两种燃料的非常规排放水平.结果表明,双喷射模式下,加入乙醇有效降低了乙烯、1,3-丁二烯、苯和甲苯的排放量,但会导致乙醛排放升高.双喷射模式下,随着负荷增加,两种燃料下的1,3-丁二烯和甲苯排放呈现先升高后降低的趋势,乙烯、甲醛和苯排放则先降低后升高.乙醇能抑制1,3-丁二烯、乙烯生成,抑制效果为PFI模式优于双喷射模式,GDI模式抑制量最低.PFI和GDI模式下E10的甲醛排放均显著升高,但双喷射模式有效抑制了甲醛排放的增加.  相似文献   
26.
利用ECMWF-ERA5和NCEP-FNL再分析资料作为中尺度气象模式WRF(The Weather Research and Forecasting)初始场,对四川盆地2018年1月一次大气污染过程气象要素进行了模拟,对比分析了气温、风速、风向、相对湿度、边界层高度、温廓线的模拟效果,并结合大气超级站观测数据对模拟结果进行评估.结果表明:两种资料均能较好地模拟出气象要素的变化情况,但由于两套资料时空分辨率、采用的模式、同化方案、数据来源和质量控制方案存在一定区别,导致各要素模拟效果并不一致.与NCEP-FNL相比,ECMWF-ERA5模拟的平均相对湿度(59.23%)与观测值差异更小,且均方根误差、偏差较小,分别为9.83%和-0.83%,但NCEP-FNL模拟的平均气温(8.99℃)更接近观测值,且偏差值较小,为-0.04℃.两组模拟结果均显示盆地内部为模拟区域的低风速区,相对湿度模拟值在60%以上,气温高于西部山地地区.NCEP-FNL模拟的盆地内部气温、相对湿度、风速小于ECMWF-ERA5模拟值,但边界层高度模拟值较大.ECMWF-ERA5模拟的逆温强度相比较小,且温度露点差较小.此次污染过程PM2.5和PM10日均浓度最大值分别为190.1 μg·m-3和261.0 μg·m-3,相对湿度增大引发的颗粒物吸湿增长是导致PM2.5和PM10质量浓度突增的主要原因.  相似文献   
27.
卫星遥感气溶胶虽然空间覆盖度高,但不同产品数据在准确性和适用性上存在显著差异.为了能够科学定量的衡量各个产品的优劣,选择最合适的气溶胶产品,该研究以数学统计为基础,提出了一种卫星遥感气溶胶产品评估体系,并依此确定了全球6个人口密集地区的最优卫星数据集,在此基础上开展了近10年的(2009—2018)气溶胶时空变化分析.结果表明暗像元算法在植被覆盖度高的地区表现最好,深蓝算法在亮地表的沙漠干旱地区更占优势,而暗像元-深蓝融合算法在土地类型复杂且气溶胶来源多变时得以突出.人口密集的6个区域中,除了区域A和区域B,其它地区的大气污染水平整体偏高.其中,A、B、E的气溶胶负荷呈下降变化,区域F基本不变,其余区域上升变化.评估体系的建立为气溶胶遥感产品的选取提供了新的衡量方法,且该文关于气溶胶时空分布及变化的分析可以为区域性气溶胶研究提供一定的参考价值.  相似文献   
28.
张晓  胡春  张丽丽  石宝友 《环境科学学报》2020,40(11):3895-3904
采用醇助水热法制备了新型生物质炭修饰的α-FeOOH类芬顿催化剂(BC-FeOOH),并通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)对催化剂进行了表征,证明生物质炭(BC)成功引入到α-FeOOH中.以罗丹明B(RhB)为目标污染物,考察了BC修饰量、催化剂及H2O2投加量对其催化效率的影响.结果表明,BC的引入可以极大地提高FeOOH的类芬顿催化性能.在pH中性、催化剂投加量0.6 g·L-1、H2O2初始浓度10 mmol·L-1的条件下,BC-FeOOH(22.2% BC)对RhB的降解率可达到90%,重复利用5次活性仍可保持在80%左右,且铁离子溶出浓度仅为0.08 mg·L-1.进一步通过ESR在不同体系中的测试结果表明,BC的引入不仅可促进H2O2有效还原分解产生更多的羟基自由基(·OH),而且增强了催化剂与污染物RhB的相互作用,促使污染物失电子氧化降解,从而提高了FeOOH的催化活性及催化稳定性.  相似文献   
29.
不同空间划分方式下袁河流域景观结构对水质的影响   总被引:3,自引:0,他引:3  
徐启渝  王鹏  舒旺  张华  丁明军 《环境科学学报》2020,40(12):4325-4337
近年来景观结构的水文效应受到关注,研究不同空间划分方式下景观结构对河流营养盐、重金属变化的影响机制对于流域生态保护具有重要意义.本文于2018年7月和2019年1月在袁河干流及支流38个采样点采集水样,测定水体营养盐类污染指标(DO、NO3--N、NH4+-N、TP和DOC浓度)和重金属类污染指标(Cr、Mn、Fe、Cu、Zn、As、Cd和Pb浓度).基于前向变量选择、冗余分析等方法,筛选景观结构指标,量化其在不同尺度下对水体营养盐、重金属变化的影响.结果表明:①农田、斑块密度(PD)、斑块聚集指数(COHESION)及散布与并列指数(IJI)是影响水体营养盐变化的主要指标.林地、建设用地(Res)、平均最近邻体距离(ENN_MN)和最大斑块指数(LPI)的组合是影响重金属变化的主要指标.②在河岸缓冲带与圆形缓冲区划分方式下,景观结构均在100 m尺度对营养盐变化解释能力最强,平均解释率分别为31.5%、24.3%,均在1000 m尺度对重金属变化解释能力最强,平均解释率分别为32.0%、42.6%.③100 m河岸缓冲带和子流域尺度分别是景观结构影响水体营养盐、重金属变化的最佳空间尺度,平均解释率分别为31.5%、42.8%.以上结果表明,针对水体不同的污染类型,采用对应的划分方式及缓冲尺度有助于提高定量分析精度,为流域水环境保护、景观优化与管理提供科学依据.  相似文献   
30.
张勇  陈骥  张锋 《中国环境科学》2020,40(1):100-108
基于我国2000~2017年食用菌年产量数据,采用排放因子法估算了菌糠露天焚烧的污染物排放量,利用Mann-Kendall法和聚类分析法分析了排放量的时空分布特征,使用回归分析法预测了污染物的排放趋势.结果表明:(1)2000~2017年全国菌糠露天焚烧污染物排放量持续上升,PM2.5、CO2、CO、CH4、NMVOCs、PAHs、NOx、SO2累积排放量分别为1.40×106,3.48×108,1.99×107,8.43×105,2.08×106,3.00×104,6.34×105,8.29×104t;(2)污染物排放量较高的省区包括山东、黑龙江、浙江、湖南、江苏、福建和河南,排放量较低的省区包括贵州、宁夏、天津、北京、新疆、重庆、甘肃;(3)预计2021年菌糠焚烧污染物总排放量高达4.25×107t,其对生物质焚烧污染物总排放量的贡献率约为19.82%.我国菌糠露天焚烧污染物排放规模较大,应予以重点关注.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号