首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   70篇
安全科学   1篇
综合类   60篇
污染及防治   19篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   5篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   12篇
  2005年   3篇
  2004年   3篇
排序方式: 共有80条查询结果,搜索用时 203 毫秒
31.
好氧颗粒污泥法降解苯胺的特性   总被引:3,自引:0,他引:3       下载免费PDF全文
在控温摇床上采用好氧振荡的方法,在含有苯胺和硝基苯混合废水处理厂的好氧污泥中,驯化降解苯胺的混合微生物.在驯化过程中发现混合微生物逐渐形成了颗粒污泥,采用此颗粒污泥(混合微生物)进行苯胺降解的实验.结果表明,该混合微生物在以苯胺为唯一碳源和氮源的情况下,具有较强的降解苯胺的能力,且最适宜的温度为28℃,最佳的pH值为7.0,当苯胺的起始浓度为600mg/L时,此条件下在18h内被完全降解,混合微生物降解苯胺的速度达到33.6mg/(L·h).  相似文献   
32.
采用Fenton氧化法处理偶氮染料丽春红2R模拟废水,研究不同因素对丽春红2R模拟废水的降解效果。结果显示,p H=3.0、H2O2浓度为2 mmol/L、c(Fe2+)/c(H2O2)=1∶5条件下,Fenton氧化法对丽春红2R模拟废水反应体系的降解效果最佳。此外,在室温(30℃)和p H=3.0条件下,模拟出Fenton氧化降解丽春红2R的初始动力学方程为R=dm/dt=0.00198[c(Ponceau2R)]0.7234[c(Fe2+)]0.5297[c(H2O2)]0.3574。通过LC-MS图对Fenton氧化降解丽春红2R过程中间产物的分析,从而推断出该染料氧化降解的路径。  相似文献   
33.
水溶性有机物对植物吸收菲的影响及其机制研究   总被引:12,自引:6,他引:6  
水培小麦试验研究了水溶性有机物(DOM)对植物吸收多环芳烃(菲)的影响,并对其机制进行了初步探讨.结果表明:菲抑制了植物的生长,抑制率达到18.01%,DOM可加剧菲对植物生长的抑制作用,使生长抑制率升至24.38%;植物可吸收和富集水培液中的菲,而DOM能明显地促进植物对菲的吸收和富集作用,使得其根部浓缩系数高达37.63 L·kg-1,同时DOM还能促进根部吸收的菲向地上部转运;植物在吸收菲的同时,使得营养介质的pH显著升高,DOM与菲存在显著的协同交互作用,可使介质pH值的升高  相似文献   
34.
不同洗脱剂对有机氯农药污染场地土壤修复效果比较   总被引:4,自引:1,他引:3  
为了筛选出能有效修复有机氯农药污染土壤的洗脱剂,选取了16种洗脱剂对2种复合有机氯农药(六六六(HCHs)和滴滴涕(DDTs)、氯丹和灭蚁灵)污染场地土壤进行超声洗脱修复。结果表明,对于HCHs和DDTs复合污染土壤,乙酸乙酯和丙酮对HCHs的洗脱率最高,分别为87.6%和87%,其余有机溶剂对其洗脱率也在70%以上。乙酸乙酯和丙酮对于DDT仍为最优,分别为86.9%与78.4%,其余有机试剂对DDT的洗脱率在60%以上。相对于有机溶剂,表面活性剂对HCHs和DDTs复合污染土壤的洗脱效果不好,总洗脱率均低于4%。同样,对于氯丹和灭蚁灵复合污染土壤,有机溶剂的洗脱效果也明显优于表面活性剂。有机溶剂对灭蚁灵的洗脱率,除了正丙醇较低(63.5%)外,其余均在80%左右。对氯丹的洗脱率,除石油醚(59.6%)、正己烷(49.3%)和正丙醇(42%),其余均在70%以上。相同摩尔浓度的表面活性剂中,吐温80对氯丹的洗脱率为54%,环糊精为20%,鼠李糖脂和曲拉通100为13%左右,其余则小于5%,吐温80对灭蚁灵的洗脱率为29.6%,曲拉通100的为12.4%,鼠李糖脂为5.7%,其余则更低。因此,高效低毒的有机试剂,如乙酸乙酯、丙酮和乙醇等可作为有机氯农药污染土壤修复的首选。  相似文献   
35.
高硫煤燃烧释放SO2污染环境。采用摇瓶实验,以FeS2驯化的嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)LX5为供试菌株,研究了pH、接种量及煤粉数量对菌株LX5进行生物脱硫的影响。实验结果表明,在15 d的反应周期中反应液的起始pH为2.0、2.5、3.0和4.0时,菌株LX5的脱硫效率分别为43.1%、73.3%、61.9%和37.3%;将菌株LX5的接种量控制为5%、10%及15%时,其脱硫效率分别为44.2%、68.1%及72.2%;将煤粉含量调整为5%、10%及15%时,LX5的脱硫效率分别为73.1%、72.2%及56.3%。摇瓶实验确定的最合适的生物脱硫条件是:培养液起始pH为2.5,LX5接种量为培养液体积的10%,煤粉加入量为培养液质量的10%。在5 L序批式反应器进行煤炭生物脱硫的启动实验,研究表明,反应15 d后煤炭脱硫率达到69.2%,而煤中黄铁矿硫的脱硫率可达78%。  相似文献   
36.
嗜酸硫杆菌和黑曲霉对电镀污泥重金属浸出效果   总被引:1,自引:0,他引:1  
电镀污泥重金属浸出对电镀污泥资源化利用具有重要意义。为了降低处置成本,采用嗜酸硫杆菌与黑曲霉对电镀污泥重金属浸出效果进行了研究。结果表明,采用嗜酸性氧化硫硫杆菌和氧化亚铁硫杆菌混合菌种对含固率为3%的电镀污泥进行为期15 d(培养驯化后)的处理后,污泥中Ni、Cr与Cu的浸出率虽分别高达92.8%、85.0%和96.8%,但耗时久,无法大规模地实际应用。利用黑曲霉对电镀污泥进行为期6 d的处理,Ni、Cr和Cu的浸出率分别达到92.0%、74.4%和55.3%。若采用黑曲霉培养15 d后产生的生物有机酸和同pH的柠檬酸处理电镀污泥4 h后,两者对Ni、Cr和Cu的浸出率分别为:85.0%与94.2%、63.8%与73.7%、57.9%与99.6%。可见,利用黑曲霉发酵菌液浸出电镀污泥中重金属有一定的实际应用价值。  相似文献   
37.
洗毛废水是洗毛生产工艺排出的兼具高COD、高悬浮固体浓度、高色度、难固液分离等典型特征,且对环境存在潜在污染的一类工业废水。通过摇瓶实验,研究了预酸化条件下,生物沥浸技术对洗毛废水的处理效果。结果表明,当洗毛废水经预酸化至p H 5.5、营养剂浓度≥4 g/L、回流比例为1∶1的情况下,3个批次实验内复合菌群生物沥浸过程稳定,洗毛废水能够很好地完成生物沥浸过程。反应结束后体系p H稳定在3.0左右,COD去除率高达90%以上,色度由原来的1 875倍降到20倍,沉淀中油脂去除率高于65%,且比阻降低至原来的0.2%~0.3%。而在对照处理中,体系p H值稳定在8.0左右,COD去除率小于10%,油脂去除率不足10%,洗毛废水比阻仅降低20%。因此,采用预酸化及生物沥浸作用有利于洗毛废水酸化处理的连续运行并具有良好的应用前景。  相似文献   
38.
采用序批次吸附试验,研究了不同填埋年限(0、4~5、12a)垃圾渗滤液中的DOM对土壤吸持重金属Cd2 、Pb2 的影响.结果表明,垃圾渗滤液中的DOM能促进土壤对重金属Cd2 、Pb2 的吸附.在有垃圾渗滤液DOM存在的条件下,Cd2 、Pb2 的吸附等温线可用Freundlich方程拟合(R2>0.94),土壤对Cd2 、Pb2 的吸附量比对照处理(无垃圾渗滤液DOM)分别高1.13~1.42倍和1.09~1.84倍,填埋年限长的垃圾渗滤液较之填埋年限短的渗滤液对土壤吸附Cd2 、Pb2 的影响强烈.在Cd2 、Pb2 初始浓度相同时,潮土较红壤具有更高的吸持能力,并且随体系pH的增高,其吸持量增加.  相似文献   
39.
生物淋滤技术浸提去除污泥中的重金属,是使污泥洁净化的有效方法.在自行设计的一套总容积为50 L的搅拌釜式反应器中进行制革污泥的生物淋滤试验.在连续曝气时,研究了连续搅拌方式和搅拌30 min后,停机30、45、60min再搅拌的间歇运行方式的效果.结果表明,连续搅拌运行以及搅拌30 min后停机30、45、60 min的间歇搅拌运行,分别经过48、60、84、156 h的生物淋滤,污泥的pH值下降到2.0以下,氧化还原电位(ORP)上升到530~545 mV,铬的溶出率达到99%以上;当固定供气量为9L/min时,污泥中的溶解氧保持在1.2~2.7 mg/L;在各种运行方式中,搅拌30 min再停机30 min的间歇运行方式,其淋滤效果与连续搅拌方式相近,而综合能耗最低,因此,搅拌30 min再停机30 min的间歇搅拌运行方式可作为工程应用的参考.  相似文献   
40.
去除污泥中重金属铬的生物淋滤反应器设计与应用   总被引:2,自引:0,他引:2  
用微生物方法去除污泥中重金属(生物淋滤法)是近年来发展的新技术,探索工程化的条件有重要的应用价值。设计了一套容积为1m^3的生物淋滤反应器,由生物淋滤池、搅拌器、曝气器和空气压缩机等构成。其中,搅拌叶轮由平叶桨和斜叶桨组合而成。利用制革污泥进行了半连续的生物淋滤试验,结果表明,在反应器中污泥与菌体和营养物质能充分混匀,经过2-5d的处理,污泥pH持续下降到2.0以下,污泥中铬的溶出率达90%-99.5%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号