首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   7篇
  国内免费   80篇
安全科学   2篇
废物处理   3篇
环保管理   2篇
综合类   99篇
基础理论   5篇
污染及防治   10篇
评价与监测   2篇
社会与环境   5篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   3篇
  2012年   9篇
  2011年   13篇
  2010年   7篇
  2009年   13篇
  2008年   17篇
  2007年   19篇
  2006年   14篇
  2005年   9篇
  2004年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
111.
发展绿色能源应对气候变化   总被引:1,自引:0,他引:1  
段茂盛 《环境保护》2007,(11):55-57
气候变化问题成为关注热点 近年来,全球气候变化问题逐渐成为一个备受关注的热点问题.这主要表现在如下两个方面:在各种不同层次的双边以及多边的外交场合,气候变化问题始终是会谈的主要议题之一;随着近年来气温的不断升高以及极端气候事件的不断增加,新闻媒体对气候变化问题的报道越来越多,内容也越来越深入,普通公众也不断加入到关于气候变化问题的讨论中来.  相似文献   
112.
113.
COD对颗粒污泥厌氧氨氧化反应性能的影响   总被引:8,自引:1,他引:8  
研究了COD对颗粒污泥厌氧氨氧化反应的影响,并对颗粒污泥的厌氧氨氧化脱氮性能进行了分析.厌氧颗粒污泥取自实验室长期运行的EGSB生物脱氮反应器,实验用水为人工配水,以葡萄糖为有机碳源;主要考察了COD对NH4 -N、NO2--N、NO3--N和TN去除的影响.结果表明:当进水不含COD时,反应器对NH4 -N、NO2--N和NO3--N和TN的去除率分别为12.5%、29.1%、16.1%和16.3%;当COD浓度分别为200mg/L、350mg/L和550mg/L时,反应器对NH4 -N的去除率分别为14.2%、14.2%和23.7%,对NO2--N的去除率均接近100%,对NO3--N的去除率分别为94.5%、86.6%和84.2%,对TN的去除率分别为50.7%、46.9%和50.4%,COD去除率分别为85%、66%和60%.分析发现,在反应初期,氨氮的去除主要通过厌氧氨氧化过程实现,随着反应的进行,反硝化菌活性逐渐提高,传统的反硝化过程占优势.同时还观察到,在反应初期COD对氨氮去除的抑制作用非常明显.图2参21  相似文献   
114.
有机成分比例对高固体浓度厌氧发酵产甲烷的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在12%高固体质量分数和中温(35± 1)℃条件下,开展了碳水化合物、蛋白质和脂肪不同比例联合厌氧发酵对产气性能和有机质降解过程影响的研究.结果表明,当3种有机质比例为55:36:9时,每gVS最大产甲烷量、最大比产甲烷速率、实际甲烷产率分别为404.1mL/gVS、11.2mL/(gVS·d)和326.7mL/gVS,皆高于其他有机质比例,并且有机质的降解过程更为高效、稳定.适当添加碳水化合物一方面能够提升自身的降解率,另一方面促使蛋白质和脂肪的进一步降解.当碳水化合物质量百分比高于65%时,总酸、单酸和分子态酸浓度的增加成为发酵过程的抑制因素.蛋白质质量百分比越高,发酵启动时间和发酵周期相应延长,其质量百分比高于48%时,总氨氮和游离氨对产甲烷过程造成一定抑制作用.  相似文献   
115.
丙烯腈生产废水的组成对膜吸收去除氰化物的影响   总被引:1,自引:0,他引:1  
以吉林某石化公司的实际丙烯腈生产废水为研究对象,考察了丙烯腈生产废水的组成对膜吸收去除氰化物的影响. 结果表明:丙烯腈生产废水中的氰化物基本为易释放的氰化物,共存的挥发性丙烯腈对膜吸收法去除氰化物的影响可以忽略不计;废水中的丙酮氰醇对膜吸收法去除氰化物的影响最大. 丙烯腈废水采用膜吸收除氨-除氰工艺,由于碱性环境以及适当的加热,促进了丙酮氰醇分解转化为HCN,氰化物的去除率可以从40%~70%提高到82%~90%,同时氨氮的去除率达到93.3%以上. 气态膜吸收法能够有效去除并回收丙烯腈废水中的氨氮和氰化物,有效降低后续处理负荷,并为后续生物处理提供可能的条件.   相似文献   
116.
Pd/C气体扩散电极用于电化学降解五氯酚钠的研究   总被引:3,自引:2,他引:1  
王辉  王建龙 《环境科学》2009,30(2):600-605
采用氢气还原法制备出Pd/C催化剂,利用循环伏安曲线(CV)对氧在Pd/C催化剂上的电化学还原行为进行了分析,并由催化剂制备成Pd/C气体扩散阴极,采用先通H2后通空气的方式在隔膜电解体系中对五氯酚钠进行降解,比较了不同电极体系下五氯酚钠的去除效果.结果表明,在阴极室,Pd/C气体扩散电极通过外界曝气提供的O2在阴极还原产生H2O2,电解100 min后H2O2的稳定浓度达到9.8 mg/L.实验制备的Pd/C气体扩散阴极既对五氯酚钠具有还原脱氯作用(通入H2时),又促进O2还原生成H2O2(通入O2时),它对五氯酚钠的去除效果要好于不掺杂Pd的气体扩散阴极.反应120 min后,五氯酚钠平均转化率和脱氯率均超过80%,反应200 min后TOC平均去除率分别超过75%.采用高效液相色谱(HPLC)等手段分析出五氯酚钠在阴极室还原脱氯的中间产物主要是苯酚,Pd/C气体扩散阴极利用电化学还原脱氯和阴阳极同时氧化相结合对氯酚类有机物的降解是可行的.  相似文献   
117.
利用聚乳酸作为反硝化固体碳源的研究   总被引:9,自引:6,他引:3  
范振兴  王建龙 《环境科学》2009,30(8):2315-2319
利用聚乳酸(PLA)颗粒作为反硝化的固体碳源和生物膜载体,考察了聚乳酸作为反硝化碳源的可行性和温度对聚乳酸颗粒反硝化脱氮性能的影响,并对聚乳酸颗粒表面进行了红外光谱分析和扫描电镜观察.结果表明,PLA颗粒作为反硝化固体碳源和生物膜载体进行反硝化脱氮,接种和驯化时间较长.在30℃,硝酸盐氮初始浓度为50 mg/L时,PLA的平均反硝化速率为2.6×10-3mg/(g.h),13 h内硝酸氮可以完全去除.温度对反硝化速率影响很大,在30~40℃之间反硝化速率较高,一旦偏离适宜温度,反硝化速率降低很快.对PLA颗粒表面的红外光谱分析和扫描电镜观察证实了PLA作为反硝化固体碳源的可行性.PLA颗粒表面的生物膜扫描电镜观察发现生物膜比较薄,以球菌为主.  相似文献   
118.
陈灿  王建龙 《环境科学》2006,27(11):2261-2267
研究了酿酒酵母无缓冲溶液体系吸附Zn(Ⅱ)的过程中各种阳离子的变化情况.研究结果表明,当Zn(Ⅱ)的初始浓度是0.08~0.8 mmol·L-1,酵母浓度约1 g·L-1,初始pH为5.65,反应38h内,酵母的Zn(Ⅱ)吸附量为74.8~654.8μmol·g-1,去除率达到76.4%~92.8%,pH值升高0.55~1.28.吸附过程中酵母首先快速释放大量K+,其次是Mg2+和Na+,Ca2+的释放量较少,数量级一般可分别达到几百、几十和几个μmol·g-1.以离子交换为基础计算的各阳离子释放量总和一般超过Zn(Ⅱ)的吸附量,证明酵母吸附Zn(Ⅱ)的机理之一是离子交换,但不唯一.无缓冲溶液体系酵母吸附Zn(Ⅱ)的过程中溶液pH值升高,H+被吸收,K+等阳离子释放,是生物体细胞的本质属性,与Zn(Ⅱ)是否存在无关,但是Zn(Ⅱ)可以促进阳离子的释放以及降低酵母对H+的吸收,也反映出Zn(Ⅱ)与H+之间可以竞争细胞表面吸附位.死酵母的吸附量低于未处理酵母,与阳离子交换能力关系不大,可能与细胞表面变形导致Zn(Ⅱ)吸附困难有关.  相似文献   
119.
全自养硝化污泥的颗粒化过程研究   总被引:3,自引:1,他引:3  
利用SBR反应器,以浓度(以N计,下同)120~650 mg/L的自配氨氮废水,在0.48~3.60 kg/(m3.d)的氨氮负荷下,探讨了自养硝化颗粒污泥的形成过程.结果表明,以硝化污泥接种,氨氮负荷为0.48 kg/(m3.d),温度为30℃±2℃,逐渐缩短沉淀时间至10 min的条件下,硝化颗粒可以在第22 d形成,并在第43 d进入相对稳定期,平均粒径达到500μm左右.颗粒污泥的平均粒径变化经历了迟滞期、快速增长期和稳定期3个阶段.污泥平均粒径由接种污泥的127μm增长到稳定期的500μm左右.在快速增长期,平均粒径增长速度可达12μm/d.成熟颗粒污泥的形状规则、分界清晰,分布有大量杆菌,粒径300μm的颗粒污泥所占比例达74.6%,污泥相中已基本没有絮状污泥.污泥在颗粒化过程中,颜色由接种污泥的灰褐色转变为颗粒污泥的黄红色.硝化颗粒污泥表面分布有大量杆菌和块状的EPS结构.  相似文献   
120.
富集培养从受污染土壤中分离到的能够以4-氯酚为唯一碳源和能源的微生物,16S rDNA序列分析表明,该微生物为Ac/naobacter sp..其降解4.氯酚的机制为邻位裂解途径,氯代邻苯二酚1,2-双加氧酶的活性可以通过氯酚的诱导显著提高.当氯酚的初始浓度范围为2~8 mmol/L时,该微生物能够很好地生长,并能有效地降解氯酚.除4.氯酚外,该微生物还可以降解2-氯酚、3-氯酚和2,4-二氯酚,有较宽的底物范围.添加柠檬酸等共基质不仅能够改善微生物的生长,还可以提高氯酚的降解效率,这对于实际受污染环境的生物修复非常重要.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号