首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   26篇
  国内免费   237篇
安全科学   14篇
废物处理   9篇
环保管理   3篇
综合类   298篇
基础理论   24篇
污染及防治   55篇
评价与监测   9篇
社会与环境   2篇
灾害及防治   2篇
  2024年   3篇
  2023年   4篇
  2022年   26篇
  2021年   58篇
  2020年   62篇
  2019年   60篇
  2018年   22篇
  2017年   51篇
  2016年   42篇
  2015年   25篇
  2014年   25篇
  2013年   9篇
  2012年   8篇
  2011年   1篇
  2010年   2篇
  2009年   5篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
排序方式: 共有416条查询结果,搜索用时 15 毫秒
121.
硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究   总被引:6,自引:4,他引:2  
周健  黄勇  刘忻  袁怡  李祥  完颜德卿  丁亮  邵经纬  赵蓉 《环境科学》2016,37(3):1061-1069
采用全混式厌氧搅拌罐,研究自养条件下,厌氧氨氧化与硫自养反硝化共同存在时,前者对系统中硫酸盐的产生和碱度消耗的影响.投加单质硫颗粒50 g·L~(-1),接种厌氧氨氧化颗粒污泥100 g·L~(-1)(湿重),控制温度35℃±0.5℃,搅拌强度120r·min-1,p H为8.0~8.4.启动硫自养反硝化阶段,进水硝酸盐浓度为200 mg·L~(-1),水力停留时间为5.3 h,反应器硝态氮负荷达0.56~0.71 kg·(m~3·d)~(-1).硫自养反硝化耦合厌氧氨氧化反应过程中,添加60 mg·L~(-1)氨氮后,硝态氮负荷仍维持在0.66~0.88kg·(m~3·d)~(-1),氨氮负荷为0.27 kg·(m~3·d)~(-1).反应体系内单位硝酸盐转化产生的硫酸盐Δn(SO~(2-)_4)∶Δn(NO~-_3)由1.21±0.06降低至1.01±0.10,Δ(IC)∶Δ(NO~-_3-N)由0.72±0.1降低至0.51±0.11,出水p H值由6.5上升至7.2.序批试实验优化反应条件:在搅拌强度G_T值为22~64 s~(-1),p H值为8.08时,耦合反应Δn(NH~+_4)∶Δn(NO~-_3)最高达到0.43,硝酸盐转化速率提升60%,过高搅拌强度(搅拌速度G_T值64 s~(-1))、不适宜的p H值(最适p H值为8.02)环境都会起同步转化效率的降低.  相似文献   
122.
污水再生过程中消毒副产物前体物转化规律   总被引:3,自引:0,他引:3  
采用大孔吸附树脂将污水中的消毒副产物(DBP)前体物分离为亲水性物质(HPI)、强疏水性物质(HPO)和弱疏水性物质(TPI)这3个组分,通过三维荧光光谱、傅里叶红外光谱和核磁共振对再生水处理各沿程前体物进行表征,并测定各沿程出水的消毒副产物生成势(DBPFP).结果表明,生活污水中DBPs前体物主要组分为腐殖质和脂肪烃,以HPI为主.一级处理(沉淀)基于HPO与水互斥的物理性能对疏水性腐殖质有较好的去除效果,腐殖质的去除会导致含碳消毒副产物生成势(CDBPFP)的降低.此外由于DON/DOC的增加,含氮消毒副产物生成势(N-DBPFP)有所增加.二级处理(生物处理)对腐殖质和脂类均有较好的去除效果,但会产生大量疏水性的溶解性微生物产物(SMP),因此生物处理后DBPs前体物主要表现为疏水性.SMP的累积会导致C-DBPFP和N-DBPFP的大幅增加.深度处理(滤布滤池)能截留部分腐殖质和疏水性的SMP,因此前体物HPO占比减少,HPI占比增加.深度处理可以通过对SMP的去除来降低C-DBPFP和N-DBPFP.  相似文献   
123.
CaO2不同投加方式对黑臭河道底泥内源磷释放抑制作用   总被引:2,自引:0,他引:2  
徐垚  李大鹏  韩菲尔  宋小君  李鑫  周婧  黄勇 《环境科学》2017,38(7):2836-2842
以S市某黑臭河道底泥和上覆水为研究材料,研究了CaO_2在3种不同投加方式下对内源磷释放的抑制效果.结果表明CaO_2在3种投加方式下,均导致上覆水中pH和DO有所增加.注射条件下,上覆水DO浓度明显低于覆盖,说明注射确实延缓了CaO_2的氧化速度,有利于创造底泥微氧化环境.CaO_2覆盖和注射条件下,上覆水中TP和DIP浓度以及变化趋势基本一致,均明显低于混匀条件.但是,覆盖条件下,间隙水中DIP浓度最高,达到注射条件下的120.33~142.18倍.相反,注射条件下,间隙水中DIP浓度最低,并且上覆水中DIP浓度也较低,说明注射条件下CaO_2对内源磷的释放确有抑制作用,这与其创造的微氧化环境密切相关.底泥中不同形态磷数量分布也证实了这一点.投加CaO_2加快了有机磷的矿化速度,铁铝结合态磷和钙结合态磷也明显增加,使得内源磷持留能力增强.  相似文献   
124.
为明确厌氧折流板反应器(ABR)稳定运行厌氧氨氧化反应后各隔室微生物群落结构特征,本文采用Miseq高通量测序分析技术,对ABR厌氧氨氧化反应器5个隔室的微生物分布规律进行了研究,结果表明,ABR反应器中脱氮微生物多样性较为丰富,变形菌门(Proteobacteria)占11.66%~20.28%,浮霉菌门(Planctomycetes)占2.18%~7.94%,硝化螺旋菌门(Nitrospirae)占0.19%~6.30%.其中,在ABR反应器中变形菌门占据主导地位,主要包含Rhodoplanes、Dok59、Rubrivivax和Bdellovibrio等菌属,浮酶菌门次之,主要包含Candidatus brocadia和Candidatus kuenenia菌属.从第1~5隔室,污泥表观红色逐渐减退,趋向于灰黑色,Chao、ACE、Shannon、Simpson指数均表明微生物群落丰富度逐渐增加,且变形菌门微生物逐渐增加,而浮霉菌门微生物逐渐降低,这与基质的降解和功能微生物的富集规律相一致.  相似文献   
125.
CSTR和MBR反应器的短程硝化快速启动   总被引:9,自引:6,他引:3  
为实现短程硝化的快速启动,采用完全混合反应器(CSTR)和膜生物反应器(MBR)进行短程硝化启动性能对比研究,考察两个反应器在启动时间、氮素转化和污泥性能3个方面的差异.结果表明在进水C/N=1,温度为30℃±1℃,pH为7.5~8.0,DO为0.6~1.0 mg·L~(-1),结合缺氧/好氧比为1∶3(15 min∶45 min)和缩短HRT,CSTR和MBR分别运行56 d和44 d成功启动短程硝化,MBR启动周期较短.运行至第14 d、第28 d和第56 d时,CSTR和MBR亚硝累积率平均为51%、66%、89%和50%、71%、93%,硝酸盐氮生成速率(以NO_3~--N/MLVSS计)依次为7.4、4.0、1.7和7.6、3.5、1.0 mg·(g·h)~(-1),MBR在第28 d和第56 d表现出较高的亚硝累积率和较低的NO_3~--N产率,有利于短程硝化的快速启动.整个运行过程中,两个反应器内的亚硝化污泥均呈黄色,SVI在55~110 mL·g~(-1),MLVSS/MLSS稳定在0.6~0.8左右,良好的污泥性能为CSTR和MBR短程硝化的快速启动创造了有利条件.MBR在短程硝化快速启动中展现出更明显的优势.  相似文献   
126.
酒精废水部分亚硝化-厌氧氨氧化脱氮的可行性   总被引:1,自引:1,他引:0  
周正  林兴  王凡  顾澄伟  沈婧  袁砚  金润 《环境科学》2017,38(8):3377-3384
采用一体式部分亚硝化-厌氧氨氧化反应器研究了酒精废水脱氮的可行性.结果表明,在pH 7.8±0.5,温度30~35℃,好氧区ORP值120~150 mV的条件下,历时40 d成功地启动了一体式PN-ANAMMOX反应器,总氮去除速率由0.125kg·(m~3·d)~(-1)上升至0.75 kg·(m~3·d)~(-1)左右,说明接种成熟的亚硝化生物膜和厌氧氨氧化颗粒污泥可达到快速启动的效果;在酒精废水处理的研究中表明,酒精废水对PN-ANAMMOX反应器的影响主要是由其中可生物降解的TOC导致,短期内可生物降解TOC的加入,ANAMMOX反应区首先受到影响;酒精废水中100 mg·L~(-1)可生物降解TOC浓度可以使总氮去除速率由0.75 kg·(m~3·d)~(-1)降低至0.25 kg·(m~3·d)~(-1)左右,降低约66%,这种抑制是可以恢复的;采用不同浓度梯度酒精废水驯化PN-ANAMMOX反应器内功能菌群,随着进水浓度梯度的增加,总氮去除速率均出现了先下降再上升的趋势,通过延长HRT和适当提高PN阶段的溶解氧的方式,有利于反应器整体脱氮效能的提高,完全以酒精废水作为进水时,总氮去除速率稳定在0.65 kg·(m~3·d)~(-1)左右,脱氮效果较好,说明一体式PN-ANAMMOX可用于回用酒精废水的处理.  相似文献   
127.
吴鹏  程朝阳  沈耀良  赵诗惠  吕亮 《环境科学》2017,38(9):3781-3786
基于厌氧折流板反应器(ABR)微生物相分离及膜生物反应器(MBR)高效截留的特性,通过加设硝化液回流与污泥回流实现了ABR-MBR一体化反应器的循环联动,对连续流条件下调控进水COD浓度及COD/TN比条件下的反硝化除磷影响机制展开了研究.结果表明在5个不同进水C/N比下,ABR-MBR组合工艺最终出水溶解性PO_3-4-P平均浓度分别为0.22、0.34、0.39、0.42和2.45 mg·L~(-1),低C/N比可获得更好的除磷效果,而C/N为4.8~6.0时,工艺对COD、TN和溶解性PO_3-4-P去除率分别在87%、76%和93%以上.此外,在C/N为3.6~6.0时,ABR缺氧吸磷量与工艺对TN去除量呈良好的线性关系,提高进水C/N比有助于系统对TN的去除.最终获得进水C/N比为6时最有利于氮和磷的同步去除.  相似文献   
128.
李祥  高佳琦  黄勇  徐杉杉 《环境科学学报》2019,39(10):3273-3278
采用具有自回流的分区式部分亚硝化(PN)和厌氧氨氧化(Anammox)耦合工艺,利用季节性温度的变化,研究了逐步降温对耦合工艺整体脱氮效能及各区域氮素转化能力的影响.结果表明,当温度由35℃降低到25℃时,因厌氧区Anammox的氮去除速率由18 kg·m~(-3)·d~(-1)下降到9 kg·m~(-3)·d~(-1),导致耦合工艺的整体氮去除速率大幅度下降,由1 kg·m~(-3)·d~(-1)下降到0.5 kg·m~(-3)·d~(-1).当温度降低到20℃时,联合工艺的脱氮速率下降趋势趋于缓慢,但好氧区的NO~-_2-N生成速率开始明显下降,由0.9 kg·m~(-3)·d~(-1)下降到0.2 kg·m~(-3)·d~(-1).同时,亚硝化菌(AOB)的优势生长被打破,硝化菌(NOB)开始大量增长,出水NO~-_3-N浓度迅速增大.运用Arrhenius公式对联合工艺总氮去除速率及各个区域氮转化速率与温度的关系进行非线性拟合,发现厌氧区Anammox的氮去除速率的温度特征系数比好氧区NO~-_2生成速率的温度特征系数大,表明温度对PN-Anammox工艺的Anammox的效能影响更大.  相似文献   
129.
连续流亚硝化中试反应器的启动及其能力提升   总被引:4,自引:3,他引:1  
朱强  刘凯  董石语  顾澄伟  王凡  李祥  黄勇 《环境科学》2017,38(10):4316-4323
通过接种污水处理厂压滤后污泥,添加悬浮填料进行挂膜,采用连续流反应器处理模拟氨氮污水,对反应器的游离氨(FA)、游离亚硝酸(FNA)以及溶解氧(DO)进行调控,实现了中试亚硝化反应器的成功启动.结果表明,通过前期高DO,后期低DO的运行模式,并对反应器运行过程中的FA、FNA进行调控实现了AOB的富集和NOB的淘汰,启动成功后反应器内部亚硝酸盐产生速率(NPR)达到1.27 kg·(m~3·d)~(-1),亚硝酸盐积累率(NAR)也稳定在98%.采用实时荧光定量PCR方法(quantitative real time PCR,q PCR)对启动初期和成功启动后反应器中的功能微生物(AOB、NOB)进行分析,q PCR结果表明反应功能微生物AOB的拷贝数从启动初期的5.3×10~9copies·m L~(-1)增长到1.6×10~(11)copies·m L~(-1),NOB的拷贝数反而从1.1×10~(10)copies·m L~(-1)下降到1.2×10~9copies·m L~(-1),AOB拷贝数的数量级比NOB的要高2个数量级,这也是在启动过程中通过DO、FA、FNA等措施对NOB联合抑制的作用.  相似文献   
130.
pH是亚硝化系统实现并稳定的重要调控手段,为研究不同C/N(0、1、2、3、4)及污泥浓度(污泥量∶配水量为1∶6、1∶3、1∶1)下亚硝化系统的pH变化规律及在不同pH变化下对污染物去除转化过程的影响,以乙酸钠为碳源,采用锥形瓶接种成熟的亚硝化污泥进行了批次试验.结果表明,相同污泥浓度下,C/N越大,pH增量越大,反硝化效率越高;相同C/N下,污泥浓度越大,pH增量越小,反硝化效率越高.反应系统对碳氮的去除转化与pH变化存在较大的相关性,且反硝化与亚硝化反应具有先后顺序.整个系统运行期间,pH上升过程的比COD去除速率是pH下降时的7~16倍,pH下降过程的比氨氧化速率(SAOR)是上升过程的1~20倍,当pH 6. 1,系统失去氨氧化能力.本试验过程中,C/N为4时该系统碳氮去除效率较其他工况最佳,3个污泥浓度下分别耗时480、350、300 min完成氨的转化及80%的COD去除.不同工况下,亚硝化反应在系统内的占比维持在50%以上,且NO-3-N浓度一直低于5 mg·L-1,表明该系统以亚硝化作用为主导.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号