首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
  国内免费   36篇
废物处理   1篇
综合类   49篇
基础理论   1篇
污染及防治   2篇
评价与监测   1篇
  2024年   3篇
  2023年   2篇
  2022年   12篇
  2021年   15篇
  2020年   9篇
  2019年   6篇
  2018年   3篇
  2016年   1篇
  2010年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
基于剩余污泥-废油脂碱性共发酵,考察聚乙烯微塑料对产短链脂肪酸(SCFA)的影响。实验结果表明,微塑料对发酵液中的SCFA浓度影响明显,但对SCFA的组成影响较小。微塑料在低赋存水平下抑制产酸,高水平时反而促进。微塑料10个/(g TS)时产酸量最低,SCFA浓度较对照低245.6 mg COD/L。微塑料200个/(g TS)时产酸量最高,最大SCFA浓度和酸产率较对照分别提升了24.7%和37.13 mg COD/(g VS)。微塑料高含量时多糖和蛋白质的水解酸化减弱,废油脂水解产物LCFA的降解得到加强。进一步的高通量测序结果显示,微塑料改变了发酵体系的微生物群落结构,高含量时反应器中存在较多氢自养反硝化菌(Pseudomonas,Alcaligene)代谢消耗发酵体系中的氢气,改善了LCFA的降解状况,提高了共发酵体系SCFA尤其是乙酸的积累。  相似文献   
22.
郑州市PM2.5化学组分的季节变化特征及来源解析   总被引:1,自引:0,他引:1  
张剑飞  姜楠  段时光  孙有昌  郝祺  张瑞芹 《环境科学》2020,41(11):4813-4824
为了解析郑州市PM2.5的污染特征和来源,同时为了研究不同季节以及市区和市郊之间的差异,本研究于2018年四季在郑州市环境保护监测中心站(市区)和郑州大学(市郊)点位共计采集环境PM2.5有效样品1284个.通过离子色谱仪、碳分析仪和X射线荧光光谱仪分别测试得到9种无机水溶性离子、两种碳组分和27种元素浓度,分析了郑州市城郊PM2.5中化学组分的季节变化特征,使用富集因子法、地累积指数法、化学质量平衡模型、后向轨迹法和潜在源贡献因子法,研究了郑州市城郊不同季节PM2.5的来源差异.结果表明,市区和市郊点位年平均PM2.5浓度达到(59.7±24.0)μg ·m-3和(74.7±13.5)μg ·m-3,郊区点位(除冬季外)季节平均浓度均高于市区点位,季节均值呈现冬季 > 秋季 > 春季 > 夏季的变化.市郊春季受地壳物质的影响较大,夏秋两季全部组分浓度均高于市区;冬季市区受燃煤源和机动车源影响更大.Cu、As、Zn、Pb和Sb受到人为源的影响强烈,市区富集程度更大,Zn、Cu、As和Pb存在一定的潜在生态风险.源解析结果显示,两点位春夏秋冬四季均分别受到扬尘源、二次硫酸盐、二次硝酸盐和燃煤源的较大影响,此外,市区四季受二次污染源和机动车源的影响较大,而市郊秋冬季受生物质源影响较大.来自山东的气团、西北方向的气团(除夏季外)、南方气团(除冬季外)对郑州市PM2.5的污染水平影响较大,其潜在来源区域主要为省内及与邻省的交界处.  相似文献   
23.
UBF-物理化学组合工艺处理Zn5-ASA医药废水的研究   总被引:1,自引:0,他引:1  
采用砂滤-UBF厌氧-絮凝沉淀工艺处理高浓度Zn5-ASA医药废水。实验结果表明,对于COD为8000-10000mg/L,色度7000-9000倍的Zn5-ASA废水,加石灰乳和H2SO4预调,经砂滤柱过滤后,COD会去除20%左右;再进以聚丙烯环为填料的厌氧UBF反应器,HRT为10.57h,COD去除率达83%-89%;出水再经化学絮凝沉淀后,无色透明,COD浓度远小于1000mg/L,符合GB8978-96三级排放标准要求,且色度小于10倍。  相似文献   
24.
工业园区由于资源能源消耗和污染排放总量大,能量梯级利用水平普遍较低,在我国推进生态文明建设的过程中受到了重点关注.本研究以河南省一个典型的高能耗工业园区(永城经济技术开发区)为研究对象,对能量梯级利用措施带来的节能效果和大气污染物减排效益进行了定量的研究,并且结合CALPUFF模型分析园区能量梯级利用措施对周边城市大气环境质量的影响.结果表明:①通过应用能量梯级利用措施,有效地提高了能源的使用效率,并减少了SO2、NOx以及颗粒物等主要大气污染物的排放量.园区12条能量梯级利用链条的节能总量为10000 TJ, SO2和NOx排放量分别减少为611 t和1407 t, PM10 和PM2.5分别减少为82 t和45 t.②CALPUFF模拟结果显示园区采用能量梯级利用措施在一定程度上改善了城市大气环境的空气质量.永城市2017年4种污染物的最大1 h平均浓度在有能量梯级利用措施情景(S2)下和无能量梯级利用情景(S1)相比均有所降低,其中NOx降幅最为明显,在春秋两季为70 μg·m-3左右.  相似文献   
25.
重工业城市济源经常发生雾-霾污染事件.挥发性有机化合物(VOCs)是二次有机气溶胶(SOA)生成的前体物,SOA对细颗粒物(PM2.5)贡献约15%~20%.于2019年12月1日至12月31日在济源进行PM2.5、 O3、 VOCs和其他微量气体在线监测,并分析VOCs污染特征、来源和SOA生成潜势(SOAP).济源观测到φ(TVOC)平均值为(54.3±27.5)×10-9.烷烃、卤代烃和炔烃是主要组分.运用正交矩阵因子分解模型(PMF)识别并分配VOCs来源.确定8个主要VOCs来源:液化石油气/天然气(LPG/NG)、聚氯乙烯(PVC)工业、机动车、焦化工业、溶剂使用、工业、工艺过程和油气挥发.二次有机气溶胶生成潜势分析发现芳香烃对SOAP的贡献最大,其中苯系物(BTEX)对SOAP贡献最大.  相似文献   
26.
晏洋洋  尹沙沙  何秦  秦凯  张瑞芹 《环境科学》2022,43(6):2947-2956
基于环境空气质量站点数据及卫星遥感数据,研究了河南省近地面臭氧(O3)2015~2020年变化特征、趋势和生成敏感性.结果表明,2015~2020年,河南省近地面O3浓度先上升后下降,2018年浓度最高,O3日最大8 h滑动平均值(MDA8)年均值为110.70μg·m-3,各站点间的MDA8值差异逐渐缩小;河南省月均MDA8时间序列表现为上升趋势,增长速率为2.46μg·(m3·a)-1,经Mann-Kendall趋势检验,除漯河、南阳和平顶山市外其它地市上升趋势均具有显著性意义(P<0.05);6 a间四季MDA8浓度也呈增长趋势,增长大小为:秋季(19.31%)>冬季(17.09%)>春季(16.82%)>夏季(7.24%); 2015~2019年河南省对流层NO2高值集中在西北部,浓度呈下降趋势,下降速率为0.34×1015 molecules·(cm2·a)...  相似文献   
27.
郑州市碳素行业无组织VOCs排放特征分析及健康风险评价   总被引:4,自引:4,他引:0  
选择郑州市3家典型碳素企业,研究了不同功能区的挥发性有机污染物(volatile organic compounds,VOCs)的排放特征及其臭氧生成潜势(ozone formation potential,OFP),并利用美国环保署(EPA)的健康风险评价模型对碳素行业排放的VOCs的健康风险进行了初步评价.结果表明,3家企业生产区VOCs质量浓度在89. 77~964. 60μg·m~(-3)之间,管理区在51. 46~121. 59μg·m~(-3)之间,萘和二硫化碳是碳素企业厂区内浓度最高的污染物;生产区VOCs的臭氧生成潜势在75. 42~1 416. 73μg·m~(-3)之间,管理区在65. 32~202. 42μg·m~(-3)之间,主要来自于芳香烃和烯烃的贡献.生产区VOCs致癌健康风险(Risk)为3. 5×10~(-5)~2. 8×10~(-3),管理区为2. 0×10~(-5)~9. 4×10~(-5),高于EPA推荐的最大可接受水平(10~(-6));生产区VOCs非致癌健康风险危害指数(hazard index,HI)为3. 2~1. 4×10~2,管理区为4. 3×10~(-1)~3. 8,除企业甲的管理区外均大于1,可能会对暴露人群的健康造成致癌和非致癌危害.  相似文献   
28.
河南省大气污染严重且与周边区域污染传输及交互影响明显,以2017年1、4、7和10月为研究对象,将河南省内18个地市的排放源分别标记,并应用于WRF-CMAQ溯源模型进行模拟.污染物分布结果表明,由于排放和气象的共同影响,河南省PM2.5、NO2和SO2浓度表现为冬季最高,夏季最低.O3-8h浓度的季节变化则为夏季最高,春季次之,冬季最低.不同季节间污染物浓度差距较大,河南省PM2.5、NO2和SO2冬季浓度平均值分别是夏季的4.17、4.12和6.24倍,而O3-8h在夏季的浓度是冬季的2.24倍.由于PM2.5、NO2和SO2与一次排放关系密切且具有一定的同源性,这3种污染物的高值分布为北高南低,季节趋势较为一致.而O3-8h季节分布差异较大,夏季气象条件有助于O3的生成,O3-8h高值主要分布于河南省东北区域;冬春秋季由于气象条件的抑制和NOx的消耗O3-8h高值主要分布在河南省的南部.传输结果表明,冬季省外传输和天然源对河南省PM2.5、O3-8h、NO2和SO2浓度的贡献率都是最大的,分别为36.20%~72.32%、77.96%~96.08%、49.45%~78.80%和59.05%~88.85%.在仅考虑本地排放和省内传输时,夏季河南省内各市的排放对本地4种污染物浓度的贡献率均为最高;春季省内传输对各市PM2.5和O3-8h浓度的贡献率较大,分别为25.63%~74.69%和30.21%~80.01%,冬季省内传输对各市NO2和SO2浓度的贡献率较大,分别为26.02%~76.96%和20.30%~82.34%.河南省内PM2.5、NO2和SO2的传输路径相似,冬季多由北向南传输,春季多由西向东,西南向东北传输,夏季多由西南向东北传输,秋季多由北向南传输,但PM2.5的传输更加复杂.而O3-8h传输路径与其他3种较为不同,特别是在秋季O3-8h由西南向东北的传输路径明显.  相似文献   
29.
2020年1月我国爆发了新型冠状病毒疫情,期间我国各地区大气污染源排放特征发生了显著改变.为研究该情景下PM2.5组分特征,本研究于2020年1月1日~2月13日利用在线观测仪器对郑州、安阳和新乡市进行连续观测.根据春节假期和疫情爆发,将研究时期分为春节前(1月1~23日)、春节疫情期(1月24~31日)和节后疫情期(2月1~13日).受疫情和有利的气象条件影响,节后疫情期间郑州、安阳和新乡市除O3外其它污染物浓度较春节前均明显下降,其中NO2和PM2.5的降幅分别为65%、52%、72%和51%、55%、54%,但是污染物浓度仍较高,表明未来河南省冬季大气污染的较大幅度改善面临巨大挑战.从颗粒物组分来看,二次无机盐和有机物是观测期间PM2.5的主要组分.春节疫情期3个城市受烟花爆竹的影响较小,并且硝酸根和扬尘的贡献相比春节前轻微下降.节后疫情期间郑州、安阳和新乡市PM2.5中硝酸根浓度和占比显著下降,占比降幅为10.6%、4.1%和4%;硫酸根和有机物的占比上升,其中二次有机碳的贡献增大.以郑州市为例分析硝酸盐生成,相比春节前,节后疫情期间不同污染时段硝酸根的占比均下降,但硝酸根仍是污染时段PM2.5中占比最高的组分.日变化特征表明节后疫情期间大气中O3浓度和湿度的增高可能促进了NO2的转化,因此下一步应采取PM2.5和O3的协同管控,重视NO2和VOCs的协同减排.  相似文献   
30.
基于2016年河南省农村污染物排放清单,采用县级优化模型,设置了基准和散煤治理2种情景,评估了2025年1月份河南省农村散煤替代的减排潜力,利用空气质量模型(WRF-CMAQ)模拟其对PM2.5污染改善的贡献,并采取泊松回归模型分析了相应的居民健康效益.结果表明,由于围护结构改造的成本较低及保温效果显著,其与采暖设备的组合技术在河南省农村家庭是最适合推广的采暖技术.在散煤治理情景下,2025年1月河南省农村居民燃烧源的SO2,NOx,CO,PM10,PM2.5,VOCs,NH3排放量与基准情景相比分别下降了98.3%,82.6%,99.8%,99.2%,98.8%,98.2%和99.4%.散煤治理情景下河南省2025年1月PM2.5浓度模拟结果与基准情景相比下降4.1μg/m3,可以避免2220人过早死亡,带来23.5亿元经济效益.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号