首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   4篇
  国内免费   37篇
废物处理   1篇
综合类   50篇
基础理论   1篇
污染及防治   2篇
评价与监测   1篇
  2024年   4篇
  2023年   2篇
  2022年   12篇
  2021年   15篇
  2020年   9篇
  2019年   6篇
  2018年   3篇
  2016年   1篇
  2010年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
31.
基于2016年河南省农村污染物排放清单,采用县级优化模型,设置了基准和散煤治理2种情景,评估了2025年1月份河南省农村散煤替代的减排潜力,利用空气质量模型(WRF-CMAQ)模拟其对PM2.5污染改善的贡献,并采取泊松回归模型分析了相应的居民健康效益.结果表明,由于围护结构改造的成本较低及保温效果显著,其与采暖设备的组合技术在河南省农村家庭是最适合推广的采暖技术.在散煤治理情景下,2025年1月河南省农村居民燃烧源的SO2,NOx,CO,PM10,PM2.5,VOCs,NH3排放量与基准情景相比分别下降了98.3%,82.6%,99.8%,99.2%,98.8%,98.2%和99.4%.散煤治理情景下河南省2025年1月PM2.5浓度模拟结果与基准情景相比下降4.1μg/m3,可以避免2220人过早死亡,带来23.5亿元经济效益.  相似文献   
32.
为研究郑州市细颗粒物(PM2.5)时空分布差异及秋冬季管控措施影响,于2017年秋季至2018年冬季选取5个点位采集PM2.5样品并进行组分分析,利用正定矩阵因子分解模型(PMF)解析PM2.5污染来源,评估郑州市秋冬季管控效果,并基于源解析结果为下一阶段秋冬季管控提供支撑.郑州市PM2.5浓度冬季 > 秋季 > 春季 > 夏季,郑州大学(ZZU)PM2.5浓度最高[(83.1±44.7)μg·m-3],高出平均浓度[(76.5±46.1)μg·m-3]的8.7%.SO42-、NO3-和NH4+在9种水溶性离子中平均占比高达22.5%、43.6%和23.4%,受燃煤影响Cl-两年冬季占比高于其他季节(6.7%和6.6%).秋冬季二次有机碳(SOC)污染严重,浓度占有机碳的一半以上,2018年市监测站(JCZ)和ZZU点位SOC/OC比2017年有所下降,但其他3个点位大幅度升高,说明这些地区不同的排放基础应对管控措施的表现不尽相同.重构结果表明硫酸盐占比在夏季最高(25.0%),硝酸盐两年秋季占比较高(23.1%和25.1%),地壳物质春季占比最高(18.2%),二次有机气溶胶(SOA)冬季最高(14.1%和20.5%);JCZ和航空港(HKG)点位SOA贡献较大(16.9%和16.4%),ZZU点位受到一次有机气溶胶和地壳物质影响较大(14.3%和12.1%).PMF结果表明二次无机盐(37.5%)、SOA(15.4%)、交通源(14.9%)、工艺过程源(4.8%)、燃煤源(16.0%)、扬尘源(6.5%)和生物质燃烧源(2.8%)是郑州市PM2.5的主要污染源,SOA和燃煤源在冬季贡献最大,扬尘源和生物质燃烧源在春季和秋季贡献较大;市区点位JCZ、ZZU和临近机场的HKG受到交通源的影响高于其他点位,非市区点位新密和HKG受到生物质燃烧源的影响较大.对比两年秋冬季,2018年秋冬季SOA、交通源和工艺过程源的贡献有所升高,而二次无机盐、燃煤源和生物质燃烧源有所下降,冬季扬尘源也有所下降.结果表明秋冬季管控措施对一次源中的扬尘、燃煤和工业效果显著,同时SOA前体物挥发性有机物是进一步减排管控的方向.  相似文献   
33.
为了研究挥发性有机物(VOCs)的污染特征,于2021年6月和12月在郑州市对两个污染过程中的VOCs进行了连续监测.结合气象条件,对比分析了VOCs冬夏季污染过程的污染特征、来源贡献和活性差异.结果显示,两个污染过程φ(VOCs)分别为(27.92±12.68)×10-9和(24.30±5.93)×10-9.冬季雾-霾污染过程相较于夏季O3污染过程,VOCs体积分数变化范围更大.冬季污染过程源解析结果:工业源(27.0%)、机动车源(22.5%)、燃烧源(20.1%)、溶剂使用源(16.3%)和油气挥发源(14.1%);夏季污染过程源解析结果:机动车源(24.8%)、工业源(24.1%)、溶剂使用源(17.4%)、油气挥发源(14.2%)、燃烧源(11.2%)和植物源(8.4%).光化学烟雾产量模型结果显示,两个污染过程中夏季臭氧生成处于VOCs控制区的天数占比(66.7%)小于冬季(100.0%).二次反应活性结果显示,冬季和夏季污染过程·OH自由基反应活性(L·OH)均值分别为4.12 s-1和4.76 s-1.夏季污染过程臭氧生成潜势(OFP)均值108.36 μg·m-3,L·OH和OFP贡献率排名前10名物种夏季污染过程以烯烃为主.郑州市冬季污染过程的总二次有机气溶胶生成潜势(SOAFP)为54.38 μg·m-3,冬季污染过程SOAFP贡献率前10名物种中芳香烃占9个.  相似文献   
34.
循环式活性污泥法中好氧选择区的运行条件研究   总被引:6,自引:0,他引:6  
研究了循环式活性污泥法好氧生物选择区的停留时间和整个系统中泥龄、污泥负荷、曝气时间等运行参数对选择区内微生物吸附性能的影响。结果表明 ,选择器停留时间 3 0 min,系统泥龄 9~ 15 d,曝气 2 h,污泥有机负荷为 0 .3 g CODCr/(g ML SS·d)左右时 ,选择器中微生物的吸附性能最优 ,可去除进水中 90以上的 CODCr。  相似文献   
35.
任何  卢轩  刘洋  尹沙沙  胡鹤霄 《环境科学》2021,42(12):5687-5697
基于本地污染源调查,同时对重点工业行业进行实地采样测试,建立了郑州市高新区工业VOCs排放清单及组分清单,并评估了 VOCs各组分的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAp).结果表明,2017年郑州市高新区工业源VOCs排放总量为4 566.0 t,橡胶和塑料制品业、设备制造业和有色金属业是排放量最大的3个行业,排放量分别为1 924.2、1 396.3和813.4 t;各VOCs组分中,烷烃占比最大(40.9%),其次是含氧VOCs(32.2%)和芳香烃(20.3%);异丙醇、正十二烷、甲苯、甲基环己烷和丙酮是排放量最大的5种物质;OFP总量为8 753.8 t,最大贡献源和VOCs种类分别为设备制造业和芳香烃;SOAp总量为643.0 t,贡献较大的排放源为设备制造业和铝箔制造业,烷烃和芳香烃是两种主要贡献组分.  相似文献   
36.
为了评估中国大气环境治理带来的健康效益,确定健康风险评价的主要驱动因素,本文使用结合人群活动因子的综合暴露响应模型,对中国东部和中部地区2013~2017年可归因于PM2.5的健康经济效益进行了估算,并量化了人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的影响贡献.结果表明,2013~2017年研究区域内PM2.5人口加权浓度下降了28.73%,PM2.5年均暴露浓度在35 μg·m-3及以下的人口比例从11.23%增加到27.91%.PM2.5浓度下降使得2017年归因死亡数下降了14.43%,可避免经济损失为5588.41亿元.当PM2.5暴露浓度达到国家二级标准(35 μg·m-3)、一级标准(15 μg·m-3)和世卫组织建议标准(10 μg·m-3)时,归因死亡人数较基准年(2017年)将减少8.22%、55.05%和79.36%,避免经济损失3190.85、21374.38和30812.97亿元.人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的贡献分别为-2.69%、-12.38%、1.66%和14.57%,其中污染物浓度降低是减轻健康负担的主导因素.中国的大气污染治理取得了显著成效,但在高PM2.5浓度和高人口密度的地区,大气污染导致的健康负担仍然很重,需要实施更加严格的空气污染控制政策.  相似文献   
37.
为了研究中原城市群区域城市秋冬季大气PM2.5的污染特征和其主要成分的潜在来源,于2018年10月到2019年1月在郑州、洛阳、安阳和新乡这4个典型城市展开秋冬季连续4个月PM2.5膜样本采集,采用X射线荧光光谱法,碳分析法和离子色谱法分别对18种无机元素,有机碳(OC)/元素碳(EC),和9种水溶性无机离子进行了测定.根据PM2.5日均值浓度水平分为3个污染等级,并分别通过对氮氧化率(NOR)和二次有机碳(SOC)及富集因子的计算结果对PM2.5主要成分NO3-和SOC及18种无机元素的时空变化进行了对比分析.通过化学质量平衡(CMB)模型计算了4个城市的排放源及贡献率,并通过后向轨迹(HYSPLIT)模型和潜在源贡献因子法(PSCF)分析了4个城市PM2.5和主要成分NO3-及OC的潜在污染来源.结果表明,采样期间郑州、洛阳、安阳和新乡PM2.5均值分别为(82.1±45.5)、(84.7±39.8)、(96.8±46.1)和(81.1±36.6)μg·m-3,日均值的最高浓度值分别是国家二级标准的3.3、2.6、3.0和2.3倍;4个城市PM2.5的主要组分都为NO3-和SOC,NO3-的浓度,NO3-/EC和NOR都随着污染等级的升高而显著升高,NO3-/EC和NOR的均值随着污染等级的升高总体上表现出郑州和洛阳略高于安阳和新乡;SOC的浓度和在OC中的占比及SOC/EC的比值都随着污染等级的升高而增大;从无机元素的浓度和富集程度来看,As在郑州最高,Mn和Fe在洛阳最高,Zn、Ni和Cr在安阳最高以及Cu和Pb在新乡最高;4个城市PM2.5污染源为二次硝酸盐、二次硫酸盐、有机物、燃煤源、机动车源、扬尘源、生物质源和工艺过程源,二次硝酸盐的分担率在郑州(37.7%)最高,新乡(14.1%)机动车分担率最高,洛阳(7.0%)和安阳(6.8%)的工业过程源的分担率相对较高;郑州、洛阳、安阳和新乡分别有51.6%、49.2%、49.6%和46.3%的气流来自西北方向;郑州潜在污染区域主要集中在河南省,洛阳主要在河南省南部和汾渭平原,安阳和新乡则是主要在河南省和京津冀传输带上,另外安徽西北部、山东西南部、山西东南部和陕西北部也对安阳和新乡OC的污染造成了影响.  相似文献   
38.
硝酸根(NO3-)、硫酸根(SO42-)和铵根离子(NH4+)是PM2.5中重要组分,研究三者的污染特征及其影响因素对空气质量的持续改善至关重要.于郑州市2020年夏季利用一系列在线PM2.5化学组分仪器开展连续观测.结果表明,郑州市2020年夏季ρ(PM2.5)平均值为(28±13)μg·m-3,呈现夜间高白天低的日变化特征.ρ(NO3-)、ρ(SO42-)和ρ(NH4+)的平均值分别为(7.8±6.7)、(7.2±3.7)和(5.5±3.1)μg·m-3,在PM2.5中的占比分别达到22%、 21%和16%.分析不同情景下组分变化规律发现,随着PM2.5浓度的上升,NO3-  相似文献   
39.
郑州市某城区冬季不同污染水平大气VOCs特征及源解析   总被引:6,自引:6,他引:0  
于2019年1月3~23日,在郑州市某城市站点对挥发性有机物(VOCs)进行观测,研究不同污染水平下VOCs组成、变化特征、来源及其对二次有机气溶胶(SOA)生成的影响.结果表明,观测期间含氧VOCs和烷烃为VOCs的主要组分,乙酸乙酯和丙酮为最丰富的物种.清洁天演变至重度污染过程中,VOCs体积分数增高约1倍,大部分物种体积分数随污染程度加重而增高.基于正交矩阵因子模型(PMF),观测期间VOCs主要来源于机动车排放、工业排放、燃烧源、溶剂使用和液化石油气(LPG)使用,且不同污染水平下来源贡献差异明显,重污染期间工业排放和溶剂使用的源贡献分别增高至约清洁天的9倍和3倍.芳香烃为SOA生成潜势(SOA_p)贡献最大的组分,甲苯和间/对-二甲苯为贡献最大的物种,溶剂使用源为贡献最大的来源,重度污染期间总SOA_p增大至约清洁天的2.6倍.加强管控芳香烃类化合物及溶剂使用等相关源的排放对改善郑州市冬季霾污染具有重要意义.  相似文献   
40.
从氧化、羧基化、酯化、接枝共聚、醚化等改性方法入手,对淀粉絮凝剂的制备和应用进行了介绍,对比分析了各工艺的特点,总结了面临的问题,展望了今后的研究方向。指出:进一步丰富醚化剂的种类、对淀粉进行复合型改性、淀粉絮凝剂与传统絮凝剂复配使用是该领域的发展趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号