首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   23篇
  国内免费   13篇
安全科学   31篇
废物处理   16篇
环保管理   138篇
综合类   98篇
基础理论   480篇
环境理论   1篇
污染及防治   258篇
评价与监测   48篇
社会与环境   30篇
灾害及防治   3篇
  2023年   6篇
  2022年   3篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   25篇
  2016年   26篇
  2015年   28篇
  2014年   49篇
  2013年   96篇
  2012年   39篇
  2011年   62篇
  2010年   52篇
  2009年   64篇
  2008年   51篇
  2007年   64篇
  2006年   56篇
  2005年   27篇
  2004年   26篇
  2003年   21篇
  2002年   30篇
  2001年   35篇
  2000年   29篇
  1999年   27篇
  1998年   16篇
  1997年   9篇
  1996年   8篇
  1995年   18篇
  1994年   14篇
  1993年   13篇
  1992年   19篇
  1991年   13篇
  1990年   17篇
  1989年   10篇
  1988年   11篇
  1987年   13篇
  1985年   4篇
  1984年   13篇
  1983年   10篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1974年   4篇
  1972年   2篇
排序方式: 共有1103条查询结果,搜索用时 15 毫秒
161.
Elmendorf SC  Moore KA 《Ecology》2007,88(10):2640-2650
There is currently no consensus on how physical and biological factors affect competitive intensity. Tests of whether competitive intensity varies along axes of environmental change have commonly been conducted in systems with a single strong environmental gradient, such as productivity, a soil resource, or an environmental stress. Frequently, these same axes are associated with changes in species composition, yet few studies have asked whether shifts in the identity of competitors affect competitive intensity. We ask whether resources (nutrients, water), stressors (heavy metals, Ca:Mg ratio), productivity (aboveground biomass), or species identity (an ordination axis of plant community composition) were the best predictors of the intensity of competition in a heterogeneous grassland landscape that included multiple independent environmental gradients. The reproductive fitness of six annual plant species was measured in the presence and absence of competitors and used to calculate relative interaction intensity (RII). We found that RII was best predicted by community composition. Nutrient availability was also important, and a post hoc test showed that competitive intensity was best explained by the combined effects of community composition and nutrient availability. We argue that community composition may be the most effective metric for predicting competitive intensity in many ecosystems because it includes both the competitive effects of the local community and information about covarying environmental characteristics.  相似文献   
162.
Thomson DM 《Ecology》2007,88(12):3126-3134
Models of source-sink and other spatial patch dynamics have generated a number of ideas and predictions about species range expansion, the evolution of local adaptation, and the factors influencing population persistence, but relatively few empirical studies have applied these ideas due to the difficulty of measuring both patch-specific demography and movement rates. In this study, I used a combination of mark-recapture experiments, model fitting, and demographic approaches to ask how habitat-specific differences in population growth and dispersal affect spread of the invasive grass Aegilops triuncialis into serpentine environments. A. triuncialis germinated at lower rates but exhibited equivalent survival and greater growth in edge (extreme serpentine) than in core populations, even accounting for density differences between habitats. Estimated growth rates (lambda) for four of five edge subpopulations were strongly positive, ranging from lambda = 1.32 to 2.09 without propagule input from adjacent habitat. Local dispersal was best described by an exponential kernel, with a mean dispersal distance about twice as long on the edge (0.24-0.40 m) as in the core (0.18 m). Twenty-five percent of marked spikes in the edge were not relocated within the patch, suggesting greater rates of either seed predation or long-distance dispersal that reduced population growth. These results suggest that A. triuncialis can successfully spread into extreme serpentine habitats without sustained propagule input from adjacent populations. Further, asymmetric dispersal that may be both habitat- and density-dependent could slow growth rates on the edge. This pattern may also increase the importance of harsh edge patches as a source of long-distance dispersers.  相似文献   
163.
Tillage and field scale controls on greenhouse gas emissions   总被引:3,自引:0,他引:3  
There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.  相似文献   
164.
River channel migration and cutoff events within large river riparian corridors create heterogeneous and biologically diverse landscapes. However, channel stabilization (riprap and levees) impede the formation and maintenance of riparian areas. These impacts can be mitigated by setting channel constraints away from the channel. Using a meander migration model to measure land affected, we examined the relationship between setback distance and riparian and off-channel aquatic habitat formation on a 28-km reach of the Sacramento River, California, USA. We simulated 100 years of channel migration and cutoff events using 11 setback scenarios: 1 with existing riprap and 10 assuming setback constraints from about 0.5 to 4 bankfull channel widths (bankfull width: 235 m) from the channel. The percentage of land reworked by the river in 100 years relative to current (riprap) conditions ranged from 172% for the 100-m constraint setback scenario to 790% for the 800-m scenario. Three basic patterns occur as the setback distance increases due to different migration and cutoff dynamics: complete restriction of cutoffs, partial restriction of cutoffs, and no restriction of cutoffs. Complete cutoff restriction occurred at distances less than about one bankfull channel width (235 m), and no cutoff restriction occurred at distances greater than about three bankfull widths (∼700 m). Managing for point bars alone allows the setbacks to be narrower than managing for cutoffs and aquatic habitat. Results suggest that site-specific “restriction of cutoff” thresholds can be identified to optimize habitat benefits versus cost of acquired land along rivers affected by migration processes.  相似文献   
165.
Introduction: While improved safety is a highly cited potential benefit of autonomous vehicles (AVs), at the same time a frequently cited concern is the new safety challenges that AVs introduce. The literature lacks a rigorous exploration of the safety perceptions of road users who will interact with AVs, including vulnerable road users. Addressing this gap is essential because the successful integration of AVs into transportation systems hinges on an understanding of how all road users will react to their presence. Methods: A stated preference survey of the Phoenix, Arizona, metropolitan statistical area (Phoenix MSA) was conducted in July 2018. A series of ordered probit models was estimated to analyze the survey responses and identify differences between various population groups with respect to the perceived safety of driving, cycling, and walking near AVs. Results: Greater exposure to and awareness of AVs are not uniformly associated with increases in perceived safety. Various attitudinal factors, level of AV automation, and other intrinsic and extrinsic factors are related to safety perceptions of driving, walking, and cycling near AVs. Socioeconomic and demographic characteristics, such as gender, age, income, employment, and automobile usage and ownership, have various relationships with perceived safety. Conclusions: Cycling near an AV was perceived as the least safe activity, followed by walking and then driving near an AV. Both similarities and differences were observed among the factors associated with the perceived safety of different travel alternatives. Practical Applications: Public perception will guide the development and adoption of AVs directly and indirectly. To help maintain control of public perception, transportation planners, decision makers, and other stakeholders should consider more deliberate and targeted messaging to address the concerns of different road users. In addition, more careful pilot testing and more direct attention to vulnerable road users may help avoid a backlash that could delay the rollout of this technology.  相似文献   
166.

Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.

  相似文献   
167.
Opperman, Jeffrey J., Ryan Luster, Bruce A. McKenney, Michael Roberts, and Amanda Wrona Meadows, 2010. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. Journal of the American Water Resources Association (JAWRA) 46(2):211-226. DOI: 10.1111/j.1752-1688.2010.00426.x Abstract: This paper proposes a conceptual model that captures key attributes of ecologically functional floodplains, encompassing three basic elements: (1) hydrologic connectivity between the river and the floodplain, (2) a variable hydrograph that reflects seasonal precipitation patterns and retains a range of both high and low flow events, and (3) sufficient spatial scale to encompass dynamic processes and for floodplain benefits to accrue to a meaningful level. Although floodplains support high levels of biodiversity and some of the most productive ecosystems on Earth, they are also among the most converted and threatened ecosystems and therefore have recently become the focus of conservation and restoration programs across the United States and globally. These efforts seek to conserve or restore complex, highly variable ecosystems and often must simultaneously address both land and water management. Thus, such efforts must overcome considerable scientific, technical, and socioeconomic challenges. In addition to proposing a scientific conceptual model, this paper also includes three case studies that illustrate methods for addressing these technical and socioeconomic challenges within projects that seek to promote ecologically functional floodplains through river-floodplain reconnection and/or restoration of key components of hydrological variability.  相似文献   
168.
Smith, Monica Lipscomb, Weiqi Zhou, Mary Cadenasso, Morgan Grove, and Lawrence E. Band, 2010. Evaluation of the National Land Cover Database for Hydrologic Applications in Urban and Suburban Baltimore, Maryland. Journal of the American Water Resources Association (JAWRA) 46(2):429-442. DOI: 10.1111/j.1752-1688.2009.00412.x Abstract: We compared the National Land Cover Database (NLCD) 2001 land cover, impervious, and canopy data products to land cover data derived from 0.6-m resolution three-band digital imagery and ancillary data. We conducted this comparison at the 1 km2, 9 km2, and gauged watershed scales within the Baltimore Ecosystem Study to determine the usefulness and limitations of the NLCD in heterogeneous urban to exurban environments for the determination of land-cover information for hydrological applications. Although the NLCD canopy and impervious data are significantly correlated with the high-resolution land-cover dataset, both layers exhibit bias at <10 and >70% cover. The ratio of total impervious area and connected impervious area differs along the range of percent imperviousness – at low percent imperviousness, the NLCD is a better predictor of pavement alone, whereas at higher percent imperviousness, buildings and pavement together more resemble NLCD impervious estimates. The land-cover composition and range for each NLCD urban land category (developed open space, low-intensity, medium-intensity, and high-intensity developed) is more variable in areas of low-intensity development. Fine-vegetation land-cover/lawn area is incorporated in a large number of land use categories with no ability to extract this land cover from the NLCD. These findings reveal that the NLCD may yield important biases in urban, suburban, and exurban hydrologic analyses where land cover is characterized by fine-scale spatial heterogeneity.  相似文献   
169.
A state-of-the-science thermodynamic model describing gas-particle absorption processes was used to predict the gas-particle partitioning of mixtures of approximately 60 carbonyl compounds emitted from low-emission gasoline-powered vehicles, three-way catalyst gasoline-powered vehicles, heavy-duty diesel vehicles under the idle-creep condition (HDDV idle), and heavy-duty diesel vehicles under the five-mode test (HDDV 5-mode). Exhaust was diluted by a factor of 120-580 with a residence time of approximately 43 sec. The predicted equilibrium absorption partitioning coefficients differed from the measured partitioning coefficients by several orders of magnitude. Time scales to reach equilibrium in the dilution sampling system were close to the actual residence time during the HDDV 5-mode test and much longer than the actual residence time during the other vehicle tests. It appears that insufficient residence time in the sampling system cannot uniformly explain the failure of the absorption mechanism to explain the measured partitioning. Other gas-particle partitioning mechanisms (e.g., heterogeneous reactions, capillary adsorption) beyond the simple absorption theory are needed to explain the discrepancy between calculated carbonyl partitioning coefficients and observed partitioning. Both of these alternative partitioning mechanisms imply great challenges for the measurement and modeling of semi-volatile primary organic aerosol (POA) species from motor vehicles. Furthermore, as emitted particle concentrations from newer vehicles approach atmospheric background levels, dilution sampling systems must fundamentally change their approach so that they use realistic particle concentrations in the dilution air to approximately represent real-world conditions. Samples collected with particle-free dilution air yielding total particulate matter concentrations below typical ambient concentrations will not provide a realistic picture of partitioning for semi-volatile compounds.  相似文献   
170.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号