首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   0篇
环保管理   16篇
综合类   5篇
基础理论   12篇
污染及防治   9篇
评价与监测   7篇
社会与环境   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
21.
Market-based conservation mechanisms are designed to facilitate the mitigation of harm to and conservation of habitats and biodiversity. Their potential is partly hindered, however, by the quantification tools used to assess habitat quality and functionality. Of specific concern are the lack of transparency and standardization in tool development and gaps in tool availability. To address these issues, we collected information via internet and literature searchers and through conversations with tool developers and users on tools used in U.S. conservation mechanisms, such as payments for ecosystem services (PES) and ecolabel programs, conservation banking, and habitat exchanges. We summarized information about tools and explored trends among and within mechanisms based on criteria detailing geographic, ecological, and technical features of tools. We identified 69 tools that assessed at least 34 species and 39 habitat types. Where tools reported pricing, 98% were freely available. More tools were applied to states along the U.S. West Coast than elsewhere, and the level of tool transferability varied markedly among mechanisms. Tools most often incorporated conditions at numerous spatial scales, frequently addressed multiple risks to site viability, and required 1–83 data inputs. Most tools required a moderate or greater level of user skill. Average tool-complexity estimates were similar among all mechanisms except PES programs. Our results illustrate the diversity among tools in their ecological features, data needs, and geographic application, supporting concerns about a lack of standardization. However, consistency among tools in user skill requirements, incorporation of multiple spatial scales, and complexity highlight important commonalities that could serve as a starting point for establishing more standardized tool development and feature-incorporation processes. Greater standardization in tool design may expand market participation and facilitate a needed assessment of the effectiveness of market-based conservation.  相似文献   
22.
Loss of volatile hydrocarbons from an LNAPL oil source   总被引:1,自引:0,他引:1  
The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene?o-xylene, benzene, C(6) and C(10-12)n-alkanes>C(7)-C(9)n-alkanes>m-xylene, cyclohexane, and 1- and 2-methylnaphthalene>1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C(6)-C(9)n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.  相似文献   
23.
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92-98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39-62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.  相似文献   
24.
Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data were used to determine the processes controlling transport and fate of NO(3)(-) in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m(-1) in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO(3)(-) concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO(3)(-) was transported into the stream. At two of the five study sites, NO(3)(-) in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO(3)(-) would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO(3)(-) loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds.  相似文献   
25.
26.
The presented case study deals with the hydromorphological alterations over a period of nearly 400 years and their ecological effects as shown by macrophytes in the urban floodplain Lobau along the Danube River within the city limits of Vienna for a period of about 160 years. Socio-economic pressures, such as flood protection (especially the Vienna Danube Regulation between 1869 and 1875), navigation and hydropower production, have modified the natural channel network in this anabranching river section into a shallow lake system in which habitat aging and sediment accumulation proceed. The aquatic and semi-aquatic habitats and their rich biodiversity would become reduced severely without any restoration measures promoting enhanced surface water exchange. The effects of restoration measures approaching pre-regulation conditions were evaluated for the macrophyte vegetation, a key ecosystem component. To collect monitoring data of the pre-regulation conditions, detailed literature data and mappings since 1846 up to recent surveys including the long-term development of aquatic vegetation patterns and aquatic habitat composition in the floodplain Lobau were analyzed. The potential effects were evaluated by analyzing how hydraulic parameters (water velocity and suitable habitat area for macrophytes) have controlled macrophyte composition and development. The study aimed at assessing the differences between the current and the historic situation caused by human impacts at different spatial scales and changes over time. By evaluating these differences we discussed intended as well as unintended effects of potential restoration measures.Primarily due to the loss of aquatic habitats the species diversity of aquatic vegetation is currently endangered and would decline without any restoration measures. However, a complete upstream reconnection of the remaining floodplain area Lobau to the Danube main channel (maximum achievable restoration goal) could also have unintended negative effects such as facilitation of the dispersal of non-native invasive species, decline of palaeopotamal species, and exposure of the floodplain to the present, altered water regime. Considering these alterations, the design of restoration projects would need to be adapted accordingly. In the presented case study Lobau, a partial reconnection instead of a complete reconnection might be the option optimizing the given management goals best.  相似文献   
27.
Land use change, natural disturbance, and climate change directly alter ecosystem productivity and carbon stock level. The estimation of ecosystem carbon dynamics depends on the quality of land cover change data and the effectiveness of the ecosystem models that represent the vegetation growth processes and disturbance effects. We used the Integrated Biosphere Simulator (IBIS) and a set of 30- to 60-m resolution fire and land cover change data to examine the carbon changes of California's forests, shrublands, and grasslands. Simulation results indicate that during 1951-2000, the net primary productivity (NPP) increased by 7%, from 72.2 to 77.1 Tg C yr−1 (1 teragram = 1012 g), mainly due to CO2 fertilization, since the climate hardly changed during this period. Similarly, heterotrophic respiration increased by 5%, from 69.4 to 73.1 Tg C yr−1, mainly due to increased forest soil carbon and temperature. Net ecosystem production (NEP) was highly variable in the 50-year period but on average equalled 3.0 Tg C yr−1 (total of 149 Tg C). As with NEP, the net biome production (NBP) was also highly variable but averaged −0.55 Tg C yr−1 (total of -27.3 Tg C) because NBP in the 1980s was very low (-5.34 Tg C yr−1). During the study period, a total of 126 Tg carbon were removed by logging and land use change, and 50 Tg carbon were directly removed by wildland fires. For carbon pools, the estimated total living upper canopy (tree) biomass decreased from 928 to 834 Tg C, and the understory (including shrub and grass) biomass increased from 59 to 63 Tg C. Soil carbon and dead biomass carbon increased from 1136 to 1197 Tg C.Our analyses suggest that both natural and human processes have significant influence on the carbon change in California. During 1951-2000, climate interannual variability was the key driving force for the large interannual changes of ecosystem carbon source and sink at the state level, while logging and fire were the dominant driving forces for carbon balances in several specific ecoregions. From a long-term perspective, CO2 fertilization plays a key role in maintaining higher NPP. However, our study shows that the increase in C sequestration by CO2 fertilization is largely offset by logging/land use change and wildland fires.  相似文献   
28.
Periphyton samples from Water Conservation Areas, Big Cypress National Preserve, and Everglades National Park in south Florida were analyzed for concentrations of total mercury, methylmercury, nitrogen, phosphorus, organic carbon, and inorganic carbon. Concentrations of total mercury in periphyton decrease slightly along a gradient from north‐to‐south. Both total mercury and methylmercury are positively correlated with organic carbon, nitrogen and phosphorus in periphyton. In horizontal sections of periphyton mats, total mercury concentrations tend to be largest at the tops and bottoms of the mats. Methylmercury concentrations tend to be the largest near the bottom of mats. These localized elevated concentrations of methylmercury suggest that there are “hot spots”; of methylmercury in periphyton.  相似文献   
29.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   
30.
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号