首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   10篇
  国内免费   27篇
安全科学   21篇
废物处理   4篇
环保管理   10篇
综合类   59篇
基础理论   19篇
污染及防治   14篇
评价与监测   2篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   10篇
  2002年   5篇
  2001年   1篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
排序方式: 共有130条查询结果,搜索用时 125 毫秒
21.
目的 掌握CAF失效机理MTTF分析方法,以便于在实际案例中实施工程优化决策,从而降低故障危害风险和寿命周期总费用。方法 以某航电电源母板CAF失效为例,基于CAF失效机理的物理化学变化时间特性模型算法,建立电压、介质间距和MTTF变化关系,以辅助工程优化决策。结果 基于仿真计算数据,形成对特定范围产品的改进和处置决策,从而限制失效危害风险的进一步扩散,降低了产品生命周期维护费用,并提升了客户满意度。结论 掌握装备常见失效机理和采取适宜的应对措施,是持续改进装备可用性、可靠性和环境适应性的必要条件。  相似文献   
22.
文章分析了现有工业烟气颗粒物超低排放用滤料存在的问题,并介绍了针对工业烟气工况和目前滤袋存在问题研发的超低排放高温高强滤料,该滤料可满足工业烟尘超低排放要求.  相似文献   
23.
针对废旧聚酯织物杂质含量高、粘度波动大、再生产品附加值低的问题,采用原位反应增粘技术,通过“微醇解-自缩聚”工艺实现了废旧聚酯织物再生制备聚酯单丝。以聚酯泡泡料为原料,整个工艺过程包括熔融过滤、反应增粘、熔体输送和纺丝等工序,可实现再生聚酯单丝的连续化生产。研究对比了“微醇解-自缩聚”工艺过程各个阶段再生料的特性粘度和热性能,结果表明该工艺可提升泡泡料的特性粘度达到0.65 dL/g,热性能良好,满足纺丝要求,再生聚酯单丝可应用于生产聚酯拉链,产品性能满足标准QB/T 2173—2014要求。  相似文献   
24.
利用纤维二糖的酵母工程菌构建   总被引:4,自引:0,他引:4  
以扣囊复膜孢酵母染色体DNA为模板,通过PCR方法扩增到其β-葡萄糖苷酶基因bgl1,经EcoRⅠ、BamHⅠ双酶切并和经相同酶切的穿梭表达载体pYX212连接,构建了重组质粒pYX-sbgl,转化酿酒酵母W 303-1A,bgl1基因获得了活性表达,β-葡萄糖苷酶活力为0.504 IU/mL.转化子能以纤维二糖为唯一碳源生长,并能应用于同时糖化和发酵纤维素底物生产乙醇,使乙醇产量较宿主酵母有了一定的提高.图6表1参14  相似文献   
25.
假丝酵母对养殖水体中亚硝酸盐的降解特性   总被引:12,自引:0,他引:12       下载免费PDF全文
应用假丝酵母(Candida sp.)对影响亚硝酸盐降解的各种主要因素进行了研究,发现降解菌在25~30℃,pH值5.6~7.0及亚硝酸盐初始浓度0~1.0mg/L范围内保持高活性.当亚硝酸盐浓度大于1.5mg/L时,平均降解速率线性下降.当接种量(菌悬液/反应液)为2 mL/1000mL时亚硝酸盐的降解是高效与经济的.同时水体中有机物、微生物的含量及Ca2+与Mg2+的比例对降解率有一定的影响.  相似文献   
26.
针对首次分离得到的一株具有同步脱氮除磷新功能的热带假丝酵母(Candida tropicalis) PNY2013,通过生理及动力学特征,连续流运行操作及其在含糖类工业废水中的应用3个环节,探讨了不同碳源模式下PNY2013同步脱氮除磷的特性.结果表明:PNY2013以葡萄糖、乙醇及乙酸为唯一碳源时均生长良好,其最大比增长速率μmax分别为0.1327、0.1252及0.1115 h-1,其同步脱氮除磷率分别可达100%、80%、100%(NH4+-N)及93%、95%、98%(PO43--P).3种碳源下PNY2013同步脱氮除磷的最佳条件基本接近为:温度30℃,pH=8.0,溶解氧0~2 mg·L-1,C/N=200∶5左右.PNY2013同步脱氮除磷的长期连续运行条件下的实验进一步表明,以葡萄糖为碳源条件下,进水NH4+-N及PO43--P浓度分别达400及80 mg·L-1时,两者去除率均接近100%.与这种超强能力相比,以乙醇及乙酸为碳源条件下,进水NH4+-N及PO43--P浓度分别达100及20 mg·L-1时,两者的去除率也可达60%~80%(NH4+-N)及40%(PO43--P),显示出相当的同步脱氮除磷能力.在以模拟制糖废水、淀粉加工废水、啤酒废水、味精废水这4种典型含糖工业废水为碳源条件下,除淀粉加工废水外PNY2013均能有效去除COD、NH4+-N和PO43--P,其中,制糖、啤酒、制药废水中的COD去除率分别可达40%、89%、96%,NH4+-N去除率分别为85%、94%、76%,PO43--P去除率均为90%.即使在40000 mg·L-1(制糖)及12500 mg·L-1(啤酒)的高COD条件下,PNY2013也均具有稳定的NH4+-N和PO43--P去除效果,显示出良好的同步脱氮除磷应用前景.  相似文献   
27.
从海洋沉积物中分离、筛选到一株能以苯酚作为唯一碳源和能源的酵母菌P5.根据菌落特征、菌体形态、生理生化特性和18S rDNA序列分析,确定菌株P5为假丝酵母菌属(Candida sp.).该菌株最适宜生长和降解苯酚的条件为:温度25℃,pH6.0~7.0,摇床转速100r/min,需氧;菌株P5能在较高浓度的苯酚条件下生长,在72h内可以降解95%以上的苯酚.对苯酚代谢途径和相关酶的研究发现,菌株P5主要在邻苯二酚1,2-双加氧酶作用下通过邻位途径进行苯酚代谢.图7表2参24  相似文献   
28.
丁莹  袁兴中  曾光明  刘智峰  钟华  王静 《环境科学》2010,31(4):1047-1052
通过液态发酵培养法探讨了添加2种化学表面活性剂十六烷基三甲基溴化铵(CTAB)、曲拉通X-100(Triton X-100)以及生物表面活性剂二鼠李糖脂(dirhamnolipid,diRL)对1株热带假丝酵母(Candida tropicalis)降解苯酚的影响.结果表明,发酵液中苯酚的分解和菌体生长的不同步,反映了苯酚对该菌的毒性作用以及苯酚降解过程中中间产物的形成.CTAB对热带假丝酵母具有毒性作用,抑制菌体对苯酚的降解.低浓度(0.1、0.3CMC)的Triton X-100对C.tropicalis的生长及对苯酚的降解有一定的促进作用,分别将苯酚降解完全的时间由空白的48h提前至24h和36h;随着Triton X-100浓度增大(1.0、3.0CMC),降解初期菌体的衰亡减缓,但使菌体生长滞后,苯酚分解完全的时间延长.生物表面活性剂diRL促进菌体对苯酚降解的同时显著地促进了C.tropicalis的生长,且促进作用随着加入diRL浓度的增大而增强,1.0、3.0CMC的diRL将苯酚降解完全的时间都提前到24h;而diRL在发酵过程中浓度也逐渐降低,这表明diRL很大程度上减弱了苯酚对菌体的毒性,并且可以共同作为碳源促进菌体的生长.  相似文献   
29.
采用大型室内湖泊模拟装置对孟氏浮游蓝丝藻在富营养化湖泊中的垂直分布与迁移特征进行了模拟,并通过10 L玻璃瓶实验对孟氏浮游蓝丝藻浮力对光的响应进行了分析.湖泊模拟实验结果表明,光照后,表层孟氏浮游蓝丝藻开始向下层迁移,光照8h后,藻丝在深2~3m左右水层形成稳定聚集层;藻丝容易集聚层在光照度为10μmol·(m2·s)-1左右水层,处于该水层上部的藻丝漂浮百分率<50%趋向于沉降,处于该水层下部的藻丝漂浮百分率>50%趋向于漂浮;无光照后,藻丝开始往水体表层聚集,无光照12h后,约20%的藻丝聚集在水体表层,无光照48h后,约50%的藻丝聚集在水体表层;说明浮游蓝丝藻白天主要分布在水体2~3m处,在早晨或连续的阴天后,可能在水体表层形成水华.10 L玻璃瓶实验结果表明,强光照[100μmol·(m2·s)-1]/无光照周期下藻丝漂浮百分率在30%-70%间变化,弱光照[25μmol·(m2·s)-1]/无光照周期下藻丝漂浮百分率在30%-50%间变化,说明强光照[100μmol·(m2·s)-1]/无光照周期下藻丝具有明显的沉降与漂浮特征.1昼夜内,藻细胞蛋白质和伪空胞的变化不明显,糖含量在14%-35%间变化,藻丝的浮力对光照的响应可能通过藻细胞的糖含量变化实现.  相似文献   
30.
此文对行星滚丝原理进行了深入细致的研究,在此基础上着重讨论了其滚压工具的设计与修复问题,并应用实例作了验证。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号