首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   29篇
  国内免费   98篇
安全科学   23篇
废物处理   10篇
环保管理   6篇
综合类   177篇
基础理论   51篇
污染及防治   38篇
评价与监测   22篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   11篇
  2019年   14篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   22篇
  2013年   15篇
  2012年   18篇
  2011年   15篇
  2010年   15篇
  2009年   26篇
  2008年   24篇
  2007年   22篇
  2006年   20篇
  2005年   19篇
  2004年   11篇
  2003年   3篇
  2002年   10篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
排序方式: 共有327条查询结果,搜索用时 312 毫秒
221.
用邻甲苯氧乙酸生产过程中产生的脱酚废水来配制氢氧化钠溶液 ,代替邻甲苯氧乙酸生产中所用的氢氧化钠溶液 ,使脱酚废水消失于生产中 ,实行零排放 ,达到清洁生产的目的。对脱酚废水回用的工艺条件做了研究 ,结果表明在不增加设备的条件下 ,可以实现脱酚废水的回用 ,对产品的质和量无不利影响  相似文献   
222.
土壤中甲烷的形成有 2条途径 :乙酸发酵和H2 /CO2 还原。比较而言 ,乙酸发酵产甲烷的能力强于H2 /CO2 还原。在特定环境中 ,何种产甲烷途径占优势取决于底物尤其是活性有机碳含量 ,而新形成的有机碳尤为重要。活性有机碳含量丰富的沼泽 ,甲烷主要由乙酸发酵形成 ,因此产甲烷能力较强。导致沼泽产甲烷能力异同的原因就是有效底物含量差异 ,从而使不同类型沼泽环境中产甲烷菌菌种不同 ,正是底物含量的高低和由此引起的产甲烷菌菌种的不同决定了不同类型沼泽产甲烷潜能的差异  相似文献   
223.
沼泽产甲烷能力和途径差异的机制   总被引:4,自引:1,他引:4  
土壤中甲烷的形成有2条途径:乙酸发酵和H2/CO2还原,比较而言,乙酸发酵产甲烷的能力强于H2/CO2还原,在特定环境中,何种产甲烷途径占优势取决于底物尤其是活性有机碳含量,而新形成的有机碳尤为重要,活性有碳含量丰富的沼泽,甲烷主要由乙酸发酵形成,因此产甲烷能力较强,导致沼泽产甲烷能力异同的原因就是有效底物含量差异,从而使不同类型沼泽环境中产甲烷菌菌种不同,正是底物含量的高低和由此引起的产甲烷菌菌种的不同决定了不同类型沼泽产甲烷潜能的差异。  相似文献   
224.
用气相色谱法测定空气中的乙酸,用FID检测,方法检出限低,各组分之间干扰小.  相似文献   
225.
为探究针铁矿对乙酸产甲烷途径的调控作用,利用ADM1模型(厌氧消化1号模型)对添加针铁矿的产甲烷过程进行模拟研究.首先引入氧化还原介质作为新变量,模拟SAO(syntrophic acetate oxidation,互营乙酸氧化)过程中的种间电子转移,进而建立包含DIET(direct interspecies electron transfer,直接种间电子传递)产甲烷过程的ADM1修正模型,最后利用该模型对各产甲烷途径的贡献进行评价.结果表明:①c(乙酸)分别为12和20 mmol/L时,添加40~2 000 mg/L针铁矿明显提高了乙酸体系的产甲烷速率.②修正的ADM1模型能够有效地模拟针铁矿强化乙酸产甲烷过程.③12、20 mmol/L乙酸体系的敏感性参数km_Xst(最大比乙酸氧化速率)校准值分别从1.02、1.46升至1.76、2.03,km_DIET(最大比电子消耗速率)校准值分别从0.78、1.48升至2.44、3.99,表明添加针铁矿提高了互营体系的种间电子传递速率.修正的ADM1模型对各产甲烷途径贡献的计算结果显示,针铁矿对DIET过程的强化作用与其添加量呈正相关,添加2 000 mg/L针铁矿试验组[c(乙酸)为12 mmol/L]中DIET和SAO产甲烷的贡献率相比对照组分别提升了117.99%和130.73%.研究显示,修正的ADM1模型能够有效地模拟针铁矿对乙酸产甲烷过程的强化作用,并且能用于评价各产甲烷途径的贡献.   相似文献   
226.
乙酸正丙酯作为一种良好的有机溶剂,应用于许多行业,但其易挥发会对大气造成污染并危害人类健康。该文以商业活性炭作为吸附剂,在固体床吸附柱上连续吸附乙酸正丙酯,研究不同入口浓度的乙酸正丙酯在活性炭上动态吸附行为的影响以及活性炭再生性能。研究表明,活性炭具有较高的固气分配系数,随着入口浓度的增大(4.40~21.96 mg/L),平衡吸附量逐渐变大(388.67~513.17mg/g),传质区高度增加,穿透时间缩短,动态吸附容量变大。采用2种穿透曲线模型(Thomas和Yoon-Nelson模型)和4种动力学模型(伪一级、伪二级、Elocivh和Bangham模型)对实验数据进行拟合分析。结果表明,Thomas和Bangham模型拟合效果较好(R20.99)。通过模型拟合能够较好预测不同入口浓度的乙酸正丙酯在活性炭上的动态吸附容量,具有一定实际意义。  相似文献   
227.
为探讨厌氧折流板反应器(ABR)启动期运行效能和互营产甲烷菌群的空间分布特征,考察了ABR反应器处理制糖废水启动期的运行特征,并采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术分析了互营产甲烷菌群在ABR各格室的分布规律.结果表明,在污泥驯化阶段,ABR的COD去除率为61.5%,出水挥发酸总量高达1808mg/L.经过2个阶段的调控运行后,ABR出水挥发酸明显降低,甲烷含量增加至55%以上,COD去除率达到了94.8%.而且ABR第2~4格室形成了沉降性能良好的颗粒污泥.PCR-DGGE检测结果表明,该ABR系统中的主要产氢产乙酸菌为Syntrophobacter和Pelotomaculum,主要分布在ABR系统第3,4格室.ABR第1,2格室的产甲烷菌主要为耐酸的氢营养型产甲烷菌(Methanoregula和Methanosphaerula),而乙酸营养型产甲烷菌(Methanosaeta和Methanothrix)主要分布在第3,4格室.ABR系统中产甲烷菌的多样性要明显高于产氢产乙酸菌,说明当系统受到冲击时,产氢产乙酸作用比产甲烷作用更易成为限速步骤.  相似文献   
228.
以氨基酸为代表的溶解性含氮有机物在水源水中广泛存在,成为制水工艺消毒副产物的主要前体物之一.选取色氨酸(Trp)为含氮前体物模型,考察了其在消毒工艺中产生受控消毒副产物的途径及影响因素.结果表明,Trp氯化过程经取代,脱羧,水解等一系列反应,可生成卤乙酸(HAAs),三卤甲烷(THMs)等消毒副产物.THMs和HAAs的生成量随加氯量增加;随接触时间的延长逐渐增加.温度的升高,HAAs的生成量先增大后减少;碱性条件有利于THMs和HAAs的生成.氯胺消毒和遮光条件下可明显减少THMs和HAAs的产生.  相似文献   
229.
采用共沉淀法制备纳米级Fe_3O_4,将其包覆在纳米Pd/Fe颗粒表面制成纳米级Fe_3O_4-Pd/Fe复合材料,并用于2,4-二氯苯氧乙酸(2,4-D)的催化脱氯.同时,采用透射电镜(TEM)、扫描电镜(SEM)等方法对复合材料的结构进行分析,并考察了初始pH、钯化率、反应温度、纳米Fe_3O_4投加量等实验参数对n Fe_3O_4-Pd/Fe复合材料催化脱氯2,4-D的影响.结果发现,纳米Fe_3O_4粒径小于Pd/Fe纳米颗粒,具有一定的磁性,包覆于纳米Pd/Fe表面,提高了纳米材料的稳定性及分散性,并有利于复合材料的回收和循环利用.此外,纳米Fe_3O_4具有一定的导电性,可作为良好的电子通道为纳米Pd/Fe颗粒传递电子,促进反应的进行,增强2,4-D的去除效果.实验结果表明,较高的钯化率、反应温度、Fe_3O_4∶Fe质量比及中性pH条件均有利于反应的进行.当纳米Fe投加量为1.0 g·L-1,m(Fe_3O_4)∶m(Fe)为1∶1,初始pH为7.0,钯化率为0.15%,反应温度为25.0℃时,反应90 min后,40.0 mg·L-1的2,4-D的去除率达到100%,苯氧乙酸(PA)的生成率达99.8%.  相似文献   
230.
氯消毒广泛应用于海水利用的预处理过程中,以减少生物膜淤积,而消毒过程会导致各类消毒副产物(DBPs)的生成,可能会对海洋生态环境具有潜在危害。系统研究了操作条件和水质对海水氯化消毒过程中生成三卤甲烷(THMs)、卤乙腈(HANs)和卤乙酸(HAAs)的影响。结果表明,氯投加量对DBPs生成的影响最大,随着投氯量的增加,THMs、HANs和HAAs的生成量显著增加,在反应初期随反应时间的延长而增加,随后HANs和HAAs的生成量开始缓慢降低而THMs基本保持不变。随着温度升高,THMs的生成量稳步增加,而HAAs和HANs在分别达到30,25℃后生成量达到最大值,之后随温度的升高而降低。p H对THMs、HANs和HAAs生成的影响相反,在酸性条件下HANs和HAAs的生成量最多,而在碱性条件下THMs的生成量最多。THMs、HANs和HAAs的生成量随溴离子浓度的改变无明显变化,但是随着氨氮浓度的升高,THMs、HANs和HAAs的生成种类和生成量均有明显降低。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号