首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   51篇
  国内免费   93篇
安全科学   204篇
废物处理   2篇
环保管理   26篇
综合类   258篇
基础理论   14篇
污染及防治   10篇
评价与监测   43篇
社会与环境   2篇
灾害及防治   12篇
  2024年   11篇
  2023年   26篇
  2022年   40篇
  2021年   38篇
  2020年   32篇
  2019年   31篇
  2018年   14篇
  2017年   16篇
  2016年   12篇
  2015年   20篇
  2014年   42篇
  2013年   19篇
  2012年   27篇
  2011年   19篇
  2010年   24篇
  2009年   20篇
  2008年   29篇
  2007年   28篇
  2006年   20篇
  2005年   28篇
  2004年   5篇
  2003年   29篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
排序方式: 共有571条查询结果,搜索用时 781 毫秒
281.
目的 探索当航空电连接器腐蚀退化时,其接触阻抗的变化规律,研究航空电连接器腐蚀退化对信号传输的影响规律。方法 首先对航空电连接器腐蚀退化的机理进行研究,建立其等效电路模型,然后分别对低频电连接器和射频电连接器进行仿真研究,提取阻抗参数,分析腐蚀退化对信号传输的影响规律。结果 接触电阻随着腐蚀程度的加深明显增大,接触电感随着腐蚀程度的加深变化不大,接触电容随着接触面腐蚀面积的增大而增大,随接触面间腐蚀厚度的增加而减小。接触电阻随频率的增加而增大,接触电感和接触电容随频率的增大基本保持不变。接触阻抗在低频时呈现感性特征,高频时呈现容性特征,阻抗幅值随频率的增加先增大、后减小,峰值出现在感性和容性转换频率处,腐蚀退化将使该转换频率减小。结论 对于低频信号,腐蚀退化将导致信号的衰减和延迟;对于高频信号,在转换频率处,信号的回波损耗、插入损耗和电压驻波比出现极值。  相似文献   
282.
目的 建立深海压力–流速耦合环境下有机涂层的寿命预测模型,并预测有机涂层在该环境下的服役寿命。方法 首先针对涂层的湿态附着力变化结果,基于灰色系统理论,建立湿态附着力的GM(1,1)模型。随后再基于耦合环境下的试验结果,建立涂层水传输的扩散模型。最后,在此基础上,利用灰色关联分析方法,计算这2种失效影响因素在涂层失效过程中所占的权重因子,并基于这2个影响因素建立涂层失效的数学模型。结果 经过数学统计验证和试验结果对比验证,该模型精度良好,可靠性高。结论 该模型能够对深海压力–流速耦合环境下有机涂层的寿命进行准确预测。  相似文献   
283.
无机气溶胶是天津冬季霾天出现的主要成分,研究挑选了2020年1月污染天中两个典型的高浓度无机气溶胶(SIA)过程(CASE1和CASE2),利用观测数据和耦合了在线污染物来源追踪方法的大气化学传输模式NAQPMS综合探究了气象要素、区域输送和化学过程的影响.两个过程的ρ(SIA)均值分别为76.8 μg·m-3和66.0 μg·m-3,硝酸盐浓度高于硫酸盐和铵盐,均为硝酸盐为主导的污染过程.气象条件影响了无机气溶胶的生成,CASE1过程ρ(SIA)>80 μg·m-3对应的温度和相对湿度区间分别是[-6℃,0℃]、[2℃,4℃]和[50%,60%]、[80%,100%];CASE2过程对应的温度和相对湿度区间分别是[2℃,4℃]和[60%,70%].外来源对CASE1和CASE2过程SIA的平均贡献率为62.3%和22.1%,分别为区域传输主导和局地生成主导过程.CASE1本地排放对硝酸盐和硫酸盐的贡献分别为16.2 μg·m-3和8.2 μg·m-3,均高于外来源的贡献(31.7 μg·m-3和8.8 μg·m-3);CASE2过程本地排放对硝酸盐和硫酸盐的贡献分别为29.3 μg·m-3和25.1 μg·m-3,而外来源的贡献为8.1 μg·m-3和9.4 μg·m-3.这表明CASE1本地生成和外来源输送贡献造成硝酸盐高于硫酸盐浓度,而CASE2仅本地源造成硝酸盐浓度高于硫酸盐.两个污染过程气相氧化反应是无机气溶胶生成的首要来源,贡献率分别为48.9%和57.8%;非均相反应也是重要过程,对SIA的贡献率分别为48.1%和42.2%;液相反应的影响小.  相似文献   
284.
浙江大气PM2.5污染问题突出。利用国家环境空气质量监测站的实时在线监测数据分析了2013年12月上旬长三角地区一次大气PM2.5严重污染前后浙江典型城市(杭州、湖州、金华、宁波和舟山)的PM2.5污染成因。结果表明,严重污染天(SPD)风速和大气边界层高度均较非污染天低,不利于污染物扩散,而气温和相对湿度高,易于二次颗粒物生成。PM2.5/CO(质量比)的变化结果显示,SPD二次颗粒物对杭州、宁波、舟山PM2.5浓度的贡献高于60%,对湖州和金华PM2.5浓度的贡献略低(42%~54%)。杭州SPD时二次NO3-、SO24-、NH4+的增长幅度远高于PM2.5,且氮转化率和硫转化率随相对湿度的升高而上升,表明硫酸盐和硝酸盐的生成是PM2.5污染的重要来源。气团后向轨迹显示,SPD时杭州和湖州主要受江苏、安徽及浙江省内其他城市气团传输的影响,宁波和舟山主要受上海、江苏、安徽及东海上空气团传输的影响,而金华主要受本地及邻近的杭州、绍兴的影响。  相似文献   
285.
利用微脉冲激光雷达探测技术,结合常规污染物监测以及PM_(2.5)化学组分监测数据,对2017年5月影响济南地区的一次沙尘天气过程进行分析。结果表明:5月4日12:00沙尘天气开始影响济南市,PM_(10)小时浓度大幅升高,至5月5日13:00,PM_(10)小时浓度达到峰值(质量浓度953μg/m~3)。沙尘过境期间近地面1 500 m以下形成消光系数和退偏比极大区,其中5月5日11:00—13:00,300 m处退偏比平均高达0. 19,非球形特性显著。沙尘天气过程中Mg~(2+)组分、Ca~(2+)组分增幅最为明显。后向轨迹模型HYSPLIT显示,此次沙尘起源于内蒙古中西部地区,沿高空西北方向传输至济南地区。  相似文献   
286.
介绍了铁合金浇注池用移动除尘系统的原理,同时对铁合金浇注池用移动除尘电气安全控制系统的原理、设计进行了阐述。通过多方案对比,选出了安全控制的设计方案,很好地解决了移动除尘系统中行车与烟气捕集罩之间同步安全的相关问题。  相似文献   
287.
对嘉兴市2013—2017年的大气污染特征进行了分析,同时研究了区域传输对其PM_(2.5)、PM_(10)、NO_2和SO_2的影响和嘉兴市O_3生成的主要原因。结果表明,自2013年以来嘉兴市PM2.5逐年下降,重度污染及以上天数逐年减少,环境空气质量总体呈逐年好转趋势。截至2017年,PM_(10)、NO_2、SO_2和CO均已达到《环境空气质量标准》(GB 3095—2012)二级标准,但PM_(2.5)和O_3仍未达标。2017年,周边地区(苏州市、湖州市、上海市、杭州市、绍兴市和宁波市)对嘉兴市PM_(2.5)、PM_(10)、NO_2和SO_2的传输贡献分别为36.2%、31.9%、25.6%、26.7%,季节差异较大,建议根据区域传输的季节性变化,制定针对性的联防联控措施。嘉兴市O3污染主要受挥发性有机物(VOCs)控制,应重点控制VOCs排放,辅以控制NO_x排放。  相似文献   
288.
海螺沟背景站地处人烟稀少、远离工业带区域,颗粒物浓度水平与美国背景区域相当,通常情况下各项污染物浓度呈周期性缓慢变化,但通过实时自动监测发现,也有部分时段出现污染物浓度急剧升高的现象,对这种情况进行统计分析,2015年共有43 d因远距离传输导致背景站浓度急剧升高现象,其间PM_(2.5)平均质量浓度为19.4μg/m~3,比其年均质量浓度(8.3μg/m~3)高1倍多。通过对2015年背景站监测数据与年气象分析资料的联合分析,结合HSPLIT 4.8轨迹模式对污染物来源进行溯源,在海螺沟国家大气背景区域的200、3 700 m 2个高度都存在南亚次大陆向中国境内输送的气流路径。后向轨迹200 m高度聚类分析结果:海螺沟背景站PM_(2.5)监测值超"正常"浓度范围时段有84%的大气污染气团主要来自南亚次大陆方向,同时,常规6项其他监测项目的浓度水平也存在协同上升效应。  相似文献   
289.
应用声学原理建立声波在3种介质内传输的模型,通过理论推导得出透射系数表达式,可为分层复合隔声结构的透射系数和透射损失计算提供理论依据,为噪声控制工程中设计分层复合隔声结构提供参考。  相似文献   
290.
基于杭州市2014—2018年夏季(7—9月)的臭氧(O3)监测数据,综合运用Lamb-Jenkinson大气环流分型方法 、近地面风场特征参数和后向轨迹聚类方法,识别出杭州市夏季O3污染的主要大气环流型,总结气团传输轨迹类型,并在此基础上探讨2016年G20峰会期间的气象条件与O 3污染变化的关系.结果表明,研究期间...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号