首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4647篇
  免费   538篇
  国内免费   1360篇
安全科学   845篇
废物处理   197篇
环保管理   410篇
综合类   3595篇
基础理论   369篇
污染及防治   793篇
评价与监测   137篇
社会与环境   33篇
灾害及防治   166篇
  2024年   47篇
  2023年   157篇
  2022年   192篇
  2021年   251篇
  2020年   205篇
  2019年   192篇
  2018年   123篇
  2017年   144篇
  2016年   191篇
  2015年   238篇
  2014年   435篇
  2013年   266篇
  2012年   283篇
  2011年   329篇
  2010年   260篇
  2009年   309篇
  2008年   292篇
  2007年   290篇
  2006年   333篇
  2005年   273篇
  2004年   237篇
  2003年   224篇
  2002年   168篇
  2001年   167篇
  2000年   109篇
  1999年   129篇
  1998年   109篇
  1997年   107篇
  1996年   90篇
  1995年   74篇
  1994年   76篇
  1993年   59篇
  1992年   44篇
  1991年   41篇
  1990年   41篇
  1989年   55篇
  1988年   1篇
  1987年   4篇
排序方式: 共有6545条查询结果,搜索用时 15 毫秒
531.
在我们这个小小的星球上,北纬40度线绵延不绝横亘于美国、日本、地中海地区和中国大陆。在形似雄鸡的中国版图上,北纬40度线地区穿越首都北京,贯通祖国最辽阔的东西疆域,成为人们最关注的地理带、经济带、文化带。在地震科学的视阈中,北纬40度线附近地区,曾经发生过多次人类历史上难以抹去的惨烈记忆:美国旧金山大地震,葡萄牙里斯本大  相似文献   
532.
玉米芯吸附水中Cr(Ⅵ)的特性及SEM-EDS表征分析   总被引:2,自引:0,他引:2  
Cr是人和动物所必需的微量元素,但工业废水中的高浓度的Cr会对人类健康和生态环境都会造成严重的危害。为探讨玉米芯对废水中Cr(Ⅵ)的吸附特性,以期为应用玉米芯处理含Cr废水提供理论依据,在本研究中设置了3项试验:不同p H条件下的吸附试验、等温吸附试验和热力学试验,并对吸附前后的玉米芯进行扫描与能谱分析,探究玉米芯作为吸附剂对水中Cr(Ⅵ)的吸附机理。结果表明:低p H有利于玉米芯对Cr(Ⅵ)的吸附,在p H为1.0左右时,玉米芯对Cr(Ⅵ)有最佳吸附效果,最高去除率可达94.35%,最大吸附量可达23.944 0 mg·g-1;玉米芯对Cr(Ⅵ)的吸附过程符合Langmuir、Freundlich和Dubinin-Radushkevich等温吸附模型,但以Freundlich模型的拟合效果为最优,1/n为0.887 5,表明玉米芯对Cr(Ⅵ)的吸附强度适中;D-R模型中E=3.152 8 k J·mol-1,表明该吸附主要为物理吸附过程;热力学参数ΔH为-0.272 8 k J·mol-1,ΔS为0.014 3 k J·mol-1·K-1,表示玉米芯对Cr(Ⅵ)的吸附是一个自发的放热过程,且升高温度有利于吸附过程的进行;通过扫描电镜可以看出玉米芯表面产生了较多空洞结构,可能是酸性吸附质溶液可以使纤维素水解,增大了玉米芯的比表面积,形成了更有利于吸附的条件;另外玉米芯质子化的静电作用以及含氧官能团对阳离子的亲和性分别对阴离子形式的Cr(Ⅵ)和被还原成阳离子的Cr(III)有吸附作用。这些原因促进了玉米芯对Cr的吸附。  相似文献   
533.
2008年汶川8.0级地震发生以来,极震区泥石流爆发频率有增无减且规模越来越大,破坏性越来越强,严重威胁灾区人民生命财产安全。对比采取现场勘查、遥感图像分析、历史资料对比分析等方法,分析了极震区泥石流动力特征受地形、地层、物源等因素的影响,特别是泥石流爆发过程中深侵蚀和溃决对泥石流动力特征的影响。针对四川安县高川乡流域泥石流沟的调查和分析,建立泥石流流量-冲刷模型,分析了常规地区泥石流峰值流量与极震区泥石流峰值流量差别,推导出极震区峰值流量及冲刷深度定量计算公式。通过实例分析,理论与实际具有较好的一致性,对极震区泥石流动力参数计算具有较好适用性和有效性。  相似文献   
534.
基于余震序列分布信息的地震极灾区快速判断方法研究   总被引:1,自引:0,他引:1  
利用震级加权标准差椭圆法研究了基于震后短期内(24 h)余震序列判定地震极灾区的方法,研究结果表明:1利用该方法判断宏观震中是一种比较可行的方法,不同震源破裂方式的震例利用该方法判断宏观震中的精度不同,倾滑-近倾滑型破裂方式的震例利用余震序列判定宏观震中的精度最高;2整体上看,利用该方法判断极灾区长轴方向的准确性低于利用距震中最近活动断裂判断的准确性,但对于倾滑-近倾滑型破裂方式的震例,利用该方法的准确性高于利用断层数据判定的准确性。  相似文献   
535.
污水处理厂产生大量的剩余污泥中含有丰富的抗性基因,给环境带来了潜在风险。以城市污水处理厂的剩余污泥为研究对象,在不同初始p H(对照组、初始p H=3、5、7、9、11)下观察厌氧条件下,8种抗生素浓度以及四环素类抗性基因(tet A、tet G、tet L、tet M、tet O、tet Q、tet W、tet X)、磺胺类抗性基因(sul I、sul II)和Ⅰ类整合子(int I 1)的行为特征。研究结果显示,初始p H对抗生素的降解影响较小,污泥中总抗生素的平均去除率为42%。对照组及初始p H为3、5、7、9、11下的总四环素类抗性基因分别削减0.65 log、0.96 log、0.75 log、0.62 log、0.86 log和0.98 log。不同四环素类抗性基因表现相似,在初始p H=3和初始p H=11下部分抗性基因削减较多,特别是tet A、tet G、tet L、tet O和tet X。2种磺胺类抗性基因均无削减,浓度平均上升0.18log。相关性分析显示,总抗性基因与TN、NH3-N、TP、SCOD(溶解性COD)均存在显著相关性(P0.05)。上述研究结果为污泥厌氧消化中抗生素抗性基因减量条件提供参考依据。  相似文献   
536.
用不同浓度的Cu、Ce和La离子交换Na Y分子筛,对比了不同改性条件下等离子体协同分解NO_x的性能.实验结果表明:Cu是NO_x催化分解的主要活性组分,对于8%Cu-Na Y催化剂,当放电电压为10 k V,放电功率为7.6 W时,NO_x转化率可达46.3%,反应产物中没有NO_2,只有11 ppm的N_2O.Ce的加入可以有效提高催化剂催化活性,对于5%Ce-8%Cu-NaY催化剂,当放电电压为7.8 kV,功率为3.6 W时,NO_x转化率可达67.3%.La的加入同样可以使催化剂活性上升,但不同La含量催化剂的NO_x转化率相差较小.  相似文献   
537.
比较了好氧、厌氧、兼氧污水处理技术的原理。好氧处理技术出水水质较好,主要应用于处理中低浓度废水或者作为厌氧处理的后续处理,但能耗高。厌氧处理技术适用于处理高浓度有机废水,逐步成为环境保护、资源利用的核心方法,但是,反应速度较慢,反应器容积较大。兼氧处理技术可发挥厌氧去除有机物绝对量高、好氧对有机物去除率高的各自优点,提高总体有机物处理效率。兼氧处理技术的发展趋势大致有:兼氧微生物降解有机物的机理、兼氧微生物的分离与培养、提高兼氧微生物处理污染物效能研究、兼氧微生物与其他微生物的相互关系。兼氧处理技术中,水解酸化工艺居于重要地位,是一个典型工艺,多年来得到广泛应用,为我国的污水处理事业做出了重要贡献。  相似文献   
538.
该文根据下凹式绿地的原理设计构建了实验室小试装置,以人工配水模拟道路径流,研究下凹式绿地对径流雨水中总磷(TP)、溶解性磷(DP)和溶解性无机磷(DIP)的削减效果,探讨了设计暴雨重现期、雨水管超高、进水污染物负荷对下凹式绿地削减道路径流中各形态磷的影响规律。研究结果表明,下凹式绿地对磷具有明显的削减效果,总磷(TP)、溶解态磷(DP)、溶解态无机磷(DIP)的总量削减率平均为86.28%、77.02%、78.17%。设计暴雨重现期和雨水管超高对下凹式绿地削减磷的效果有一定影响,重现期越小,雨水管超高越大,磷的削减效果越好。经下凹式绿地处理后的径流中TP的去除率在两种进水污染物负荷条件下基本相等,DP、DIP的去除率受进水污染物负荷的影响,高负荷进水的去除率大于低负荷进水。  相似文献   
539.
对于太阳能干燥器的性能测试实验,本文采用红色朝天椒作为实验对象。实验表明,辣椒在烘干抽屉中的堆积厚度在2cm到6cm之间时,辣椒的干燥速率并不受到太大影响,而辣椒厚度再继续增加的时候,干燥速率开始明显下降。而热风温度越高,辣椒的干燥速率则明显加快。太阳能干燥设备相对自然晾晒提高了卫生条件和产品品质,与其他干燥设备相比,具有节能、低碳、低成本等优势。  相似文献   
540.
本文根据实验室多年的实际工作经验,分析和讨论了用离子色谱法和气相分子吸收仪两种方法测定水中硝酸盐氮的含量。其结果显示,两种方法的精密度、准确度和测定结果无显著性差异,均可作为测定地表水和地下水水中硝酸盐氮的测定方法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号