首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4672篇
  免费   533篇
  国内免费   1479篇
安全科学   847篇
废物处理   197篇
环保管理   413篇
综合类   3608篇
基础理论   370篇
污染及防治   912篇
评价与监测   137篇
社会与环境   33篇
灾害及防治   167篇
  2024年   52篇
  2023年   168篇
  2022年   204篇
  2021年   254篇
  2020年   210篇
  2019年   192篇
  2018年   138篇
  2017年   177篇
  2016年   221篇
  2015年   258篇
  2014年   435篇
  2013年   268篇
  2012年   284篇
  2011年   329篇
  2010年   260篇
  2009年   309篇
  2008年   294篇
  2007年   290篇
  2006年   333篇
  2005年   273篇
  2004年   237篇
  2003年   224篇
  2002年   168篇
  2001年   167篇
  2000年   109篇
  1999年   129篇
  1998年   109篇
  1997年   107篇
  1996年   90篇
  1995年   74篇
  1994年   76篇
  1993年   59篇
  1992年   44篇
  1991年   41篇
  1990年   41篇
  1989年   55篇
  1988年   1篇
  1987年   4篇
排序方式: 共有6684条查询结果,搜索用时 31 毫秒
851.
工程结构地震动输入是结构抗震设计研究中的重要问题,输入的合理与否直接影响着结构抗震能力。本文以框架结构为分析对象,将结构振动周期作为结构动力参数,地震记录加速度反应谱的特征周期作为地震动特征参数,通过计算对比发现:场地条件相同、峰值加速度相同、震中距相近的情况下,反应谱特征周期与结构基本周期接近的地震记录会让结构产生较大的地震反应。  相似文献   
852.
等效力控制方法及其在混合试验中的应用   总被引:1,自引:0,他引:1  
对于大型复杂结构的实时(拟动力)子结构试验,更适宜用无条件稳定的逐步积分方法。隐式逐步积分方法通常是无条件稳定的,然而需要复杂耗时的迭代求解非线性方法。为了避免迭代过程,等效力控制方法用反馈控制求解非线性方程,使隐式逐步积分方法在实时子结构试验中的应用成为可能。本文首先以平均加速度法为例介绍等效力控制方法的原理、关键参数的选取;然后介绍基于等效力控制的能量守恒子结构试验方法和隐式中点法;最后介绍这些方法在以防屈曲支撑阻尼器为试件的单自由度简化结构、以磁流变阻尼器为试件的海洋平台结构的实时子结构试验,以及装配式钢筋混凝土剪力墙结构和框支配筋砌块短肢剪力墙结构拟动力试验中的应用。研究结果表明:这三种等效力控制方法都具有很好的精度,等效力控制方法相对于中心差分法具有更好的稳定性。  相似文献   
853.
854.
催化极谱法测定茶叶中的总路   总被引:2,自引:0,他引:2  
刘训健  赵阳 《环境化学》1990,9(3):84-88
  相似文献   
855.
光催化作为一项绿色、高效的污染物治理技术,其传统光催化材料缺少对全光谱中红外光区的利用,会在一定程度上造成资源的浪费,限制了污染物降解能力上限。因此,利用WO3-x光催化降解甲氧苄啶(TMP),探索了不同光谱下的降解性能以及在最优降解条件下的降解机理。结果表明:黑暗和红外光条件下,TMP几乎未发生降解。全光谱条件下TMP的降解率相较于紫外-可见光提高44.8%。2种体系中WO3-x光催化反应降解TMP的机理较为相似,O-2·和H2O2是发挥主要作用的活性物种。在降解过程中,大量的活性自由基在催化剂表面产生,然后进入均相体系,促进TMP降解;同时,WO3-x对全光谱中红外光区间段的有效吸收展现出优异的降解能力。此外,温度在反应体系中并不是提升降解率的主导因素。  相似文献   
856.
非甲烷有机物(NMOCs)是生活垃圾填埋场释放的重要恶臭物质及臭氧前体物,好氧快速稳定化可有效缩短垃圾稳定化周期.为了解该过程中NMOCs的组分浓度变化特征及潜在环境影响,在河北省某生活垃圾腾退填埋场采集曝气和非曝气阶段场地表面、堆体内部及覆膜破损处的10个气体样品,以气相色谱-质谱法定性、定量分析其中NMOCs的组分和浓度.结果表明:①共检出57种NMOCs物质,曝气阶段NMOCs总浓度(10 555.88 μg/m3)比非曝气阶段(32 358.81 μg/m3)低67%,曝气有效降低了NMOCs的释放浓度.②所有样品的烯烃平均浓度在NMOCs总平均浓度中占比(42.6%)最高,其中丙烯(1 007.28 μg/m3)和正丁烯(822.77 μg/m3)的平均浓度最高.③相关性分析和主成分分析表明,曝气阶段各类物质来源相似或受同一环境因素影响,非曝气阶段卤代烃与其他NMOCs来源有显著差异.④分别以等效丙烯浓度法和最大增量反应活性法计算,曝气阶段臭氧生成潜势较非曝气阶段分别降低了71%和73%,快速稳定化可有效控制臭氧前体物的释放浓度.烯烃是好氧快速稳定化中臭氧生成潜势贡献最大的物质,占臭氧生成总潜势的86%.但所采集10个样品中有9个样品的臭氧生成潜势可能诱发空气质量问题,是GB 3095-2012《环境空气质量标准》中O3二级浓度限值(200 μg/m3)的1~525倍.研究显示,烯烃是好氧快速稳定化过程释放的主要非甲烷有机物类物质.   相似文献   
857.
近年来,新污染物在水体中被频繁检出,其化学性质稳定、易生物积累,给生态环境和人类健康带来严重威胁. 为解决此问题,高级氧化技术逐渐发展为一种有前景的环境修复方法,在众多氧化剂中,分子氧(O2)是丰富、经济、绿色的氧化剂. O2主要经由催化促进的电子转移和能量转移途径而被活化,进而转化为活性氧物种(ROS). 活化O2转化为ROS,有望成为清除水中新污染物富有潜力的研究方法和实用技术. 目前,研发更高效催化材料(或其他类型活化材料),以实现对O2的高效活化和对污染物的彻底、快速降解是相关领域研究的关注焦点. 本文重点介绍了活化O2降解水中新污染物的基本概念和最新研究进展,包括O2可转化生成的主要ROS、O2活化策略、活化O2用于降解新污染物的研究成果等,并对O2活化所遇到的核心问题和未来发展趋势进行了总结和展望.   相似文献   
858.
内分泌干扰物双酚A (BPA)的广泛分布对水环境和人类健康造成了潜在的威胁. 为探究超薄硫掺杂的石墨相氮化碳纳米片(US-CN)对BPA的光催化降解性能及其降解机理,使用US-CN对BPA进行了光催化降解,使用电子顺磁共振(EPR)检测了光降解过程中产生的反应性氧自由基(ROS),通过密度泛函理论(DFT)结合自然布局分析(NPA)计算了BPA的原子电荷值,使用LC-MS检测了BPA光催化降解过程的中间产物. 结果表明:①US-CN在可见光(VL)下(简称“US-CN/VL体系”)100 min内对BPA的去除率可达66.39%,去除率的准一级反应动力学常数约为石墨相氮化碳(CN)的6倍. ②在US-CN/VL体系中添加L-组氨酸后,60 min内BPA的去除率从50.00%降至6.45%,表明单线态氧(1O2)是导致BPA降解的主要ROS. ③在US-CN/VL体系中,1O2可能由超氧自由基或溶解氧转化产生. ④基于密度泛函理论计算了BPA分子易被1O2攻击的富电子原子位点, 并检测出BPA的5种降解中间产物,推测BPA在US-CN/VL体系中可能存在去甲基化和羟基化两种降解路径. 研究显示,US-CN在可见光下能产生以1O2为主的ROS,攻击BPA的富电子原子,对BPA有良好的光催化效果.   相似文献   
859.
将污泥生物炭作为载体培养好氧颗粒污泥,研究培养成熟的好氧颗粒污泥在碳氮比(C/N)由10降为4条件下的长期运行稳定性.结果表明,通过添加生物炭培养成熟的好氧颗粒污泥颗粒结构更紧密,不易解体.虽然丝状菌Thiothrix大量增殖,但是好氧颗粒沉淀性能良好,SVI30始终维持在50mL/g左右;系统COD去除效率达到90%以上,TN去除率为70%左右.高通量测序分析表明,加炭系统微生物多样性有所降低,但具有反硝化功能的细菌数量增加,提升了系统脱氮性能.添加污泥生物炭培养成熟的好氧颗粒污泥具有更好的脱氮性能和长期运行稳定性,有利于低C/N条件下的高氨氮废水处理.  相似文献   
860.
基于苯酚降解中间产物(苯醌)、酸性甲基橙的目标化合物,研究了苯醌类与苯醌亚胺类在光/Fenton体系中的降解特性,分析了苯醌及酸性甲基橙的光敏特性,测定了光敏剂存在的情况下日光/Fenton和UV/Fenton体系中·OH的产量.结果表明,苯醌类光解,由于其光敏性好,能促进日光体系产生更多的·OH,日光/Fenton法好于UV/Fenton法.苯醌亚胺类降解,浓度较低时,UV/Fenton法好,浓度较高时,日光/Fenton法好,造成这种现象的主要原因是苯醌亚胺类光敏性一般,浓度低时日光体系中·OH的产量少于紫外体系,但苯醌亚胺类降解过程中有苯醌类生成,苯醌类的光敏性比苯醌亚胺类好,苯醌亚胺类浓度越高,其降解产物中苯醌类越多,进而导致日光体系中1O2、O2-·和·OH的产量多于紫外体系.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号