首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6269篇
  免费   612篇
  国内免费   1733篇
安全科学   373篇
废物处理   261篇
环保管理   885篇
综合类   5521篇
基础理论   382篇
污染及防治   645篇
评价与监测   384篇
社会与环境   135篇
灾害及防治   28篇
  2024年   77篇
  2023年   239篇
  2022年   323篇
  2021年   402篇
  2020年   339篇
  2019年   346篇
  2018年   276篇
  2017年   295篇
  2016年   346篇
  2015年   360篇
  2014年   637篇
  2013年   400篇
  2012年   446篇
  2011年   436篇
  2010年   332篇
  2009年   340篇
  2008年   364篇
  2007年   358篇
  2006年   266篇
  2005年   254篇
  2004年   205篇
  2003年   260篇
  2002年   179篇
  2001年   198篇
  2000年   162篇
  1999年   143篇
  1998年   124篇
  1997年   86篇
  1996年   94篇
  1995年   62篇
  1994年   69篇
  1993年   50篇
  1992年   47篇
  1991年   29篇
  1990年   40篇
  1989年   30篇
排序方式: 共有8614条查询结果,搜索用时 15 毫秒
851.
张星星  王超超  王垚  徐乐中  吴鹏 《环境科学》2020,41(8):3715-3724
为探究不同废污泥源快速启动短程反硝化和实现稳定NO_2~--N积累的可行性,在3个完全相同的SBR反应器(S1、S2和S3)分别接种:实验室城市污水反硝化除磷系统排泥、城市污水厂剩余污泥及河涌底泥,比较其短程反硝化启动快慢和NO_2~--N积累特性,考察系统短程反硝化活性和NO_3~--N→NO_2~--N转化性能,并从微生物学角度分析反应器功能菌群特征.结果表明,在乙酸钠为唯一碳源、高碱度和适宜COD/NO_3~--N比进水条件下,3个SBR短程反硝化反应器在短时间内均能够成功启动,系统平均NO_3~--N→NO_2~--N转化率为S1 S2 S3(75. 92% 73. 36% 69. 90%).同时发现持续低温条件下S1和S2呈现不同程度的短程反硝化性能恶化趋势,但S3能够稳定维持良好NO_2~--N积累性能.微生物高通量测序表明,变形菌门和拟杆菌门居PD系统主导地位,3个短程反硝化反应器NO_2~--N积累关键功能菌属Thauera属丰度差异明显:S3 S1 S2(25. 09% 4. 71% 3. 60%),表明S3具备稳定高效的NO_2~--N积累性能,同时高丰度Thauera属可能是维持低温短程反硝化活性的重要原因.  相似文献   
852.
I/M制度作为一个系统存在着脆性源,如果该制度在运行过程中控制不好脆性源,则其有效实施将受到影响。利用系统脆性理论对该制度进行分析研究找出L/M制度系统的脆性源以及解决措施是其分析研究的目的。在系统子因子中从业人员素质、仪器设备是最大的脆性源,但是其均被维修企业和检测企业所包含。综合分析研究结果显示,由于其在维修企业的脆性度比在检测企业的脆性度大,所以维修企业是该制度最重要的脆性源。用系统脆性理论分析方法分析I/M制度的脆性是一种科学、有效和实用的方法,具有较好的应用前景,为保障更好的运行I/M制度以有效的控制在用车的排放提供了理论依据。  相似文献   
853.
为了改善区域环境质量,促进经济又好又快发展,国家环保总局综合考虑区域环境质量现状后于日前提出了“区域限批”政策。这是落实环境目标责任制和责任追究制的有效途径,也是严格控制污染物排放总量、实现“十一五”降耗减排目标的需要。从理论研究上说,一个区域到底能够承受多少企业的污染物,归结为环境容量问题。本文从水环境容量研究在水环境管理中的应用角度出发,回顾了中国地表水环境容量研究应用的发展历程,指出其中存在的问题,并做展望。随着中国经济增长方式的转变和环境保护工作力度的加强,水环境容量研究的广度和深度将会继续发展,水环境容量研究在中国水环境管理中的作用也会日益显著。[编者按]  相似文献   
854.
选取塑胶零件、印刷线路板及主板3类消费电子产品部件为研究对象,利用活性炭管采样,样品溶剂解吸后采用GC/MS分析,获得了各排气筒及车间内VOCs含量水平与组分特征.通过计算排放量,得出了分物种VOCs排放系数.结果表明,塑胶零件生产线排气筒总挥发性有机物(TVOCs)浓度为48.01~115.05 mg·m-3,印刷线路板为6.08~11.36 mg·m-3,主板为29.81~30.21 mg·m-3.塑胶零件生产车间内TVOCs浓度为4.23~120.58 mg·m-3,印刷线路板为1.50~2.02 mg·m-3,主板为7.01~9.93 mg·m-3.环烷烃类、酯类、苯类为主要排放物质.对于不同产品生产线的排气筒及车间废气,浓度和物种均有很大差异;对于相同产品,浓度有差异但物种基本相同.按产品分类,共计算得出了36个分物种VOCs排放系数,其中,塑胶零件、印刷线路板及主板TVOCs排放系数分别为0.626 kg·kg-1涂料用量、0.123 kg·kg-1油墨用量、0.028 kg·kg-1印刷线路板用量.通过排放量计算结果分析,3种产品中,塑胶零件生产为VOCs主要排放源,车间内无组织排放为主要排放方式.  相似文献   
855.
美国科学家的一项研究发现,废弃油气井可能在向空气中释放大量重要温室气体——甲烷。相关研究发表在最新一期的《美国国家科学院学报》上。这项研究主要基于对美国宾夕法尼亚州19个废弃油气井的甲烷流出量进行的直接测量。美国普林斯顿大学和斯坦福大学的研究人员在2013年到2014年的7个月中对这些油气井进行了近100次测量,并发现所有的废弃油气井都释放甲烷——无论这些油气井位于森林、湿地、草地还是江河流域。研究称,如  相似文献   
856.
本实验采用氨三乙酸酐改性玉米秸秆纤维素和苎麻纤维素,制备了两种改性纤维素吸附剂NTAA-CS及NTAA-RF,并研究了这两种吸附剂对水中Cd2+的吸附性能.通过元素分析、FTIR及SEM分析发现,纤维材料表面成功引入了氨三乙酸分子中的酯键和氨基基团.在改性纤维素吸附剂投加量为2 g·L-1,Cd2+的初始浓度为200 mg·L-1,p H值为4.0时,NTAA-CS和NTAA-RF对Cd2+的去除率分别为82.6%和90.2%.吸附实验结果表明:改性纤维素吸附剂对Cd2+的吸附是一个快速过程,吸附的最佳p H范围为4.0~7.0.吸附等温线用Langmuir方程的拟合效果优于Freundlich方程.经过5次吸附再生,吸附剂仍可以保持较大的吸附容量.这些结果表明,NTAA-CS和NTAA-RF在去除重金属废水中有较大的应用前景.  相似文献   
857.
为探讨山东省大气颗粒物(PM2.5和PM10)排放的时空分布特征,创建了包含生物质燃烧源、扬尘源、化石燃料燃烧源、工艺过程源、废弃物处理源和道路移动源6大类共281个子源的排放源分类系统,应用排放因子法和COPERT v5模型建立了山东省高分辨率(4 km×4 km)颗粒物排放清单.结果表明:(1)2017年,山东省P...  相似文献   
858.
厌氧氨氧化-羟基磷酸钙(anammox-hydroxyapatite, anammox-HAP)技术可实现污泥厌氧消化液高效自养脱氮同步磷回收。污泥厌氧消化液中磷的浓度与污泥性质、厌氧消化过程相关,变化范围很大。为探索anammox-HAP系统中的磷回收效率,通过基于anammox-HAP长期运行的膨胀颗粒污泥床反应器,考察了不同进水磷浓度、pH和钙磷质量比(Ca/P)对磷回收效率及污泥特性的影响。结果表明:进水磷浓度在40~250 mg·L−1时,膨胀颗粒污泥床反应器脱氮性能稳定,总氮去除率可达88.5%;磷回收效率与进水磷浓度、反应器内pH及进水Ca/P密切相关,磷回收效率最高为89.7%;高磷浓度下形成的颗粒污泥,有望实现高效的磷资源利用。本研究可为利用anammox-HAP系统实现磷回收提供参考。  相似文献   
859.
湿法烟气脱硫技术简述   总被引:12,自引:0,他引:12  
陈东  林继发 《陕西环境》2003,10(5):32-34
湿法脱硫技术是目前国内外研究最多,应用最广的脱硫技术。该文阐述了几种主要湿法烟气脱硫技术如石灰石-石膏法、钠碱法、双碱法、氨法、金属氧化物吸收法等的脱硫原理、工艺流程。以及它们适用范围和优缺点.并在此基础上结合其应用、研究的新动向,对脱硫技术的选择提出建议。  相似文献   
860.
《化工环保》2007,27(5):412-412
该发明公开了一种电石废水的处理方法。其处理方法:电石废水先进入反应槽,加入硫酸亚铁溶液反应后,用泵吸入水槽,通过管道泵进入管道混合器,在管道混合器中加入絮凝剂进行充分混合后,进入电石废水处理装置,出水进入监护池,在监护池中加入质量分数为5%的稀硫酸调节废水的pH,出水达到国家《污水综合排放标准》的一级排放标准,不达标时,废水排人装有活性炭的装置进行吸附处理,达标后排放。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号