首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   985篇
  免费   131篇
  国内免费   342篇
安全科学   163篇
废物处理   42篇
环保管理   53篇
综合类   791篇
基础理论   190篇
污染及防治   99篇
评价与监测   83篇
社会与环境   9篇
灾害及防治   28篇
  2024年   15篇
  2023年   51篇
  2022年   71篇
  2021年   70篇
  2020年   48篇
  2019年   54篇
  2018年   36篇
  2017年   46篇
  2016年   43篇
  2015年   74篇
  2014年   99篇
  2013年   68篇
  2012年   79篇
  2011年   69篇
  2010年   48篇
  2009年   62篇
  2008年   61篇
  2007年   51篇
  2006年   46篇
  2005年   38篇
  2004年   33篇
  2003年   29篇
  2002年   20篇
  2001年   15篇
  2000年   29篇
  1999年   25篇
  1998年   23篇
  1997年   23篇
  1996年   18篇
  1995年   31篇
  1994年   22篇
  1993年   25篇
  1992年   19篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
排序方式: 共有1458条查询结果,搜索用时 734 毫秒
371.
梁榕  何娇  孙飞虎  张瑞芳  王鑫鑫 《环境科学》2024,45(6):3679-3687
微塑料污染对土壤生态系统的威胁引起了广泛关注.为了明确聚乙烯微塑料对土壤性质的影响,通过为期4个月的土壤培养试验,探究不同质量分数(1 %、2.5 %、5 %)和粒径(30目、100目)聚乙烯微塑料对土壤化学性质、养分含量和酶活性的影响.结果表明:①100目2.5 %和5 %微塑料处理显著降低了土壤pH,不同质量分数和粒径聚乙烯微塑料添加对土壤电导率影响不显著.②相比于CK,添加微塑料会不同程度降低土壤速效钾、有效磷和硝态氮含量.添加100目微塑料显著增加了土壤有机质和铵态氮含量.③当微塑料粒径为100目时,相比于CK,不同质量分数处理均显著提高了土壤过氧化氢酶和碱性磷酸酶活性,5 %处理显著降低了土壤蔗糖酶活性.④土壤性质的变化受微塑料质量分数和粒径影响,质量分数越高、粒径越小,影响越显著.综上,聚乙烯微塑料对土壤性质的影响没有预期的明显,未来研究应重点关注不同影响所涉及的机制问题.  相似文献   
372.
为弥补常规压裂液破胶困难、残留多或黏度低、用量大等缺点,将疏水改性羟丙基瓜尔胶与双子表面活性剂进行交联复配,制得1种疏水聚合物/表面活性剂复合压裂液,从黏度、破胶性能以及对煤样甲烷吸附解吸能力影响等方面与常规压裂液进行对比分析。研究结果表明:在同等表面活性剂质量分数下,加入疏水改性羟丙基瓜尔胶的复合压裂液黏度是单组份表面活性剂压裂液的3倍,其破胶时间与表面活性剂压裂液几乎无差别,且仅为HPG压裂液的1/2;复合压裂液对煤样甲烷吸附解吸能力影响明显低于HPG压裂液,其吸附损伤因子虽高于表面活性剂压裂液,但比HPG压裂液低24%。研究结果可为矿用复合压裂液研制提供参考。  相似文献   
373.
对非甲烷总烃自动连续监测系统进行示值误差、响应时间、零点漂移和量程漂移等性能测试,对非甲烷总烃便携式分析仪进行检出限、精密度、准确度等性能测试。性能测试满足相关要求后同时利用便携式催化氧化-氢火焰离子化检测器法(催化氧化-FID)、便携式气相色谱-氢火焰离子化检测器法(GC-FID)和实验室气相色谱-氢火焰离子化检测器法(GC-FID)对固定污染源非甲烷总烃自动连续监测系统进行现场比对测试。测试结果表明,在工况变动较大的情况下,便携式FID法与实验室GC-FID法测试结果相对误差为19. 6%~35. 1%,具有很好的可比性。以实验室GC-FID法为参比方法时,自动连续监测系统相对准确度为64. 1%,不满足《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ 1013—2018)的要求。以便携式FID为参比方法时,自动连续监测系统相对准确度分别为28. 6%和35. 3%,相对《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》(HJ 38—2017)方法一致性更好,均能满足《HJ 1013—2018》的要求。提出,应推进便携式方法在自动连续监测系统验收和质控比对中的应用。  相似文献   
374.
小体积液液萃取-GC/MS法测定地表水中有机磷农药   总被引:2,自引:0,他引:2       下载免费PDF全文
采用小体积液液萃取-气相色谱/质谱联用法测定地表水中有机磷农药,以1.2 mL正己烷为萃取剂,磷酸三苯酯为内标,对8种目标化合物的富集倍数达156~436.方法在1.00 μg/L~20.0 μg/L范围内线性良好,8种有机磷农药的检出限均为0.2 μg/L,实际水样平行测定的RSD为2.1%~9.7%,平均加标回收率...  相似文献   
375.
以贵州六枝特区龙岭煤矿大巷中泥样作为厌氧型甲烷氧化菌富集源,以甲烷作为培养过程中唯一碳源,从中筛选出可以在低氧(1.99%)或无氧条件下对甲烷具有较高降解效能的菌种,并自主开发出甲烷氧化菌降解煤吸附甲烷实验分析系统。实验结果表明,在压力为1~5 MPa范围内无论是低氧或无氧状况下,甲烷压力越大越有利于其降解;稀氧条件下煤样对甲烷的吸附量相对于纯甲烷气体吸附量有所降低,然而在同等压力条件下稀氧环境中二氧化碳的增加量及甲烷的降解率都要明显大于无氧条件下,低氧状况下甲烷的最高降解率为47%,最大二氧化碳生成量可达40 cm^3。  相似文献   
376.
寒冷地区煤炭运输设备上煤的冻黏严重影响煤炭运输的安全与效率,为分析各地不同煤样的冻黏强度特性及原因,选取各地5个存在冻黏现象煤矿的煤样,测试其在Q235和UHMWPE材料上的冻黏强度,并检测5种煤样的外在水质量分数、粒度和孔容分布,结果表明:在亲水性Q235材料上,内蒙古锡林浩特煤样冻黏强度最高(2.58 MPa),其次是辽宁铁法煤样(2.02 MPa)和黑龙江双鸭山煤样(1.36 MPa),北京大安山(0.773 MPa)和木城涧煤样(0.689 MPa)较低;不同煤样在疏水性UHMWPE材料上的冻黏强度分布在0.159~0.230 MPa。各煤样因煤质、采掘破碎工况、煤化程度等因素导致其粒度和孔容分布不同,使各自外在水质量分数不同,进而导致煤样在亲水性Q235材料上冻黏强度差别明显,外在水质量分数高的煤样冻黏强度相对较高;在UHMWPE材料上,各煤样的冻黏强度因材料的疏水性而对外在水质量分数差异不敏感,因而普遍很低且差别很小,可见采用UHMWPE基体材料对各地煤在运输设备上的冻黏具有一定防治作用。  相似文献   
377.
用亨盖特(Hungate)厌氧技术,以甲醇为唯一碳源获得了甲烷八叠球菌的富集培养物,以甲醇或乙酸钠(或两者各50%)为碳源滚管培养,获得了以甲烷八叠球菌的分离培养物。用聚乙烯醇(PVA)为包埋剂对甲烷八叠球菌sp固定化,并对其特性进行了研究。结果表明:固定化甲烷八叠球菌与非固定化甲烷八叠球菌的总产气量相似,但两者的产气特性有明显不同。固定化甲烷八叠球菌产气迟于非固定化甲烷八叠球菌,固定化甲烷八叠球菌的产气集中,在产气的6天中,平均日产气量30.88mL甲烷,最高产气量可达2.80mL甲烷/h,在产气高峰两天中的产气量占总产气量的66.0%。非固定化甲烷八叠球菌产气平稳,平均日产气量为8.91mL甲烷。固定化甲烷八叠球菌的电子显微镜观察结果表明,细胞在固定介质中多呈较大包囊存在,包囊直径30~50μm。  相似文献   
378.
崔平  姚亨  齐立文 《环境科学》1996,17(2):26-28
通过对北京地区稻田种植上空甲烷浓度持续2a的观测发现,该地区大气中1992和1993年甲烷的年平均浓度1.16,1.17μg/L,且季节性变化规律以及年际变化规律有比较的趋势,一年中当地上空甲烷的浓度呈明显的冬春低夏秋高的趋势,且夏季甲烷浓度的变化幅度比较大。该地区甲烷浓度的日变化趋势不明显。在水稻期内的7、8月莘,稻上空甲烷浓度和水稻甲烷排放速率有密切的关系,动态分析表明,该地区大气中甲烷浓度年  相似文献   
379.
本文综述了湿地甲烷排放的研究进展,包括湿地甲烷排放的研究方法、时空变化、排放机制、影响因素以及主要湿地类型排放通量,并指出了今后研究方向及应注意的问题。  相似文献   
380.
余辉  雷佼  邓文扬  李元洲 《火灾科学》2021,30(3):125-133
火焰几何特性和辐射特性是刻画火灾规模及其危害的重要参量。利用三维火焰重构技术,获取了丙烷浮力扩散火焰的火焰高度、表面积、体积和火焰面元视角系数的变化规律。结果表明,三维重构的火焰能够表征真实火焰形态的动态变化。平均火焰表面积和体积均可较好地拟合为热释放速率的幂函数,火焰表面积热释放速率随火焰热释放速率的增加趋于常数。平均火焰高度、表面积和体积与火焰外部平均辐射热流之间具有较好的幂函数关系,且拟合指数随着与火源距离的增大而减小。此外,将点源、圆柱辐射模型和火焰面元积分方法得到的辐射计算值与辐射测量值进行比较,发现火焰面元积分方法能够更好地预测火焰外围的瞬时和平均辐射热流分布。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号