首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   87篇
  国内免费   327篇
安全科学   108篇
废物处理   13篇
环保管理   45篇
综合类   647篇
基础理论   138篇
污染及防治   117篇
评价与监测   55篇
社会与环境   8篇
灾害及防治   3篇
  2024年   13篇
  2023年   47篇
  2022年   62篇
  2021年   53篇
  2020年   41篇
  2019年   44篇
  2018年   33篇
  2017年   48篇
  2016年   42篇
  2015年   60篇
  2014年   73篇
  2013年   47篇
  2012年   56篇
  2011年   53篇
  2010年   32篇
  2009年   50篇
  2008年   34篇
  2007年   23篇
  2006年   34篇
  2005年   24篇
  2004年   21篇
  2003年   19篇
  2002年   15篇
  2001年   9篇
  2000年   21篇
  1999年   20篇
  1998年   18篇
  1997年   20篇
  1996年   18篇
  1995年   27篇
  1994年   20篇
  1993年   24篇
  1992年   18篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
排序方式: 共有1134条查询结果,搜索用时 15 毫秒
991.
通过中温半连续厌氧消化实验,考察了果蔬垃圾在不同食微比(0.5、0.75、1.0和1.5)及不同水力停留时间(2、3和4d)下的产氢性能.结果表明,当食微比较低(0.5和0.75)时,各水力停留时间下均不适宜连续产氢,且在水力停留时间为3 d和4 d时容易产生大量甲烷;当食微比较高(1.0和1.5)时,可以实现稳定连续产氢,发酵过程中几乎无甲烷产生.当食微比及水力停留时间分别为1.0及3 d时可获得最佳连续产氢效率,其最高容积产氢量和平均容积产氢量分别为451m L·(L·d)~(-1)和(186±29)m L·(L·d)~(-1),最高挥发性固体产氢率和平均挥发性固体产氢率(以VS计)分别为133 m L·g~(-1)和(27±5)m L·g~(-1),氢气含量可达20%~30%.  相似文献   
992.
生活垃圾填埋场为全球第三大人为甲烷排放源。中国填埋垃圾体量巨大,生化降解持续产生含甲烷的填埋气,对中国碳达峰目标实现具有潜在影响,亟待预测评估。文章基于中国近40年生活垃圾产量和填埋量相关统计数据,建立了中国城市生活垃圾人均日产量与人均GDP的数学关系,预测了未来10年生活垃圾总产量和填埋量。通过对目前常用的3种填埋气产量计算模型比较分析与实测数据验证,筛选出了比较符合中国城市生活垃圾产气特点的双组分产气模型,利用该模型预测了中国未来10年填埋气总产量和甲烷排放量,评估了碳达峰前生活垃圾填埋场甲烷源碳减排潜力。预测结果表明:2021-2030年中国至少新增28.1亿t生活垃圾,其中8.5亿t仍以填埋方式处置;2021-2030年全国所有垃圾填埋场填埋气总产量达1 399.9亿m3,其中约75%的填埋气由2021-2030年间新增填埋垃圾产生,剩余25%由1980-2020年累计填埋的33.1亿t垃圾产生。评估结果表明:全国垃圾填埋场甲烷排放量介于494.7~659.6亿m3,对应的甲烷源碳排放量估算为8.9~11.8亿t。相比于中国其他重点行...  相似文献   
993.
碳、氮物质对水稻田土壤甲烷氧化活性影响的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
研究了碳素和氮素物质对黄松田土壤中甲烷氧化菌种群及其甲烷氧化活性的影响,结果表明,加入不同碳素或氮素物质对黄松田土中甲烷氧化菌种群的数量变化无显著性影响,但对土壤氧化外源甲烷烷尖性却具有显著性影响,且不同浓度的同一物质对黄松田土壤氧化外源甲烷速率的影响也不相同,甲烷氧化代谢途径中的中间产物(甲醇和甲酸)较非甲烷氧化代谢途径中的中间产物和能促进土壤产甲烷菌产甲烷活性的碳源物质(酵母膏,葡萄糖和乙酸)可更强烈地抑制土壤氧化外源甲烷的活性,有机氮素物质对黄松田土的甲烷氧化速率的影响要较无机氮素质质弱,在无机氮素物质中,硝酸盐对土壤氧化外源甲烷活性的抑制强度要强于铵盐类物质,NH3要比NH^ 4对甲烷氧化菌的甲烷氧化活性具有更强的抑制作用,一旦黄松田土的甲烷氧化活性受到碳,氮物质的抑制,恢复其氧化外源甲烷活性就需要较长时间,且受到抑制的过程越,恢复所需时间也越长。  相似文献   
994.
羟基氧化铁催化臭氧氧化对滤后水THMs生成势的控制作用   总被引:3,自引:3,他引:3  
鲁金凤  张涛  马军  陈忠林  江进 《环境科学》2006,27(5):935-940
实验比较了滤后水经过单独臭氧氧化和羟基氧化铁催化臭氧氧化后的三卤甲烷生成势(THMFP).考察了不同的溴离子含量、pH值、碱度、O3/TOC比例、氧化反应时间、催化剂投量时,2种氧化条件下滤后水THMFP的变化规律.发现羟基氧化铁催化氧化后,滤后水的THMFP比单独臭氧氧化后的降低了30.5%.溴离子浓度较高时THMs以溴代产物为主,羟基氧化铁催化氧化后溴代的THMFP是单独臭氧氧化后的45%~65.5%.在滤后水pH值为6.33~9.43、O3/TOC比值为0.65~2.05、氧化时间为2~20min的条件下,羟基氧化铁催化氧化都表现出明显降低THMFP的优势.碱度升高使2种氧化后的THMFP都降低,且使其差值减小.催化剂存在降低THMFP的最佳投量.催化氧化降低滤后水THMFP的原因是比单独臭氧氧化提高了对TOC的去除率,催化产生的羟基自由基进一步氧化降低了水中有机物卤代活性位的数量.  相似文献   
995.
提高厨余垃圾厌氧消化甲烷产量的研究进展   总被引:9,自引:0,他引:9  
从垃圾性质(底物、颗粒尺寸)、工艺条件(温度、pH值、搅拌、加入金属、载体)、工艺流程(增加预处理、消化气回流)等方面,概述了在厨余垃圾的厌氧消化处理中,提高甲烷产量的研究进展。  相似文献   
996.
生物甲烷抑制剂缓释扩散模型推导与优化   总被引:1,自引:1,他引:1  
以石蜡和松香为缓释基质,以碳化钙为生物甲烷抑制材料,对有效抑制组分——乙炔的扩散规律进行了研究.以T.Higuchi方程为基础,针对复杂基质的气体缓释进行了修正,得到缓释抑制剂的扩散机制模型,该模型可以有效预测乙炔的扩散系数De.同时考察了基质优化对扩散系数的影响,如果缓释基质的硬度不够,碳化钙与水反应产生的热量可导致缓释抑制剂内部膨胀从而影响缓释效果.当基质中松香的质量分数为20%,基质与碳化钙的质量比为1/1时,缓释基质的硬度和致密度提高,乙炔的扩散系数达到2.2849×10-8cm2/min(R2=0.9901),该缓释抑制剂可以有效地解决生活垃圾填埋场等人为源生物甲烷的减排问题.  相似文献   
997.
稻田有机肥输入会使田面水含有含量的溶解性有机碳(DOC).溶解性有机物(DOM)是具有三致效应的消毒副产物(DBPs)的前体物,而DOC是用于表征DOM浓度的一个指标.本研究旨在评估水稻田田面水的三卤甲烷(THMs)前体物的生成反应性,解析猪粪有机肥对于THMs前体物从水稻田输出的潜在影响.于水稻种植季选取4个猪粪施用梯度(以C计,下同)(0[对照],714.1[低],1428.2[中]与2142.3[高]kg·hm-2),检测了稻田田面水中的DOC,UVA254与三卤甲烷生成潜能(THMFP).结果表明,3个指标两两之间呈线性相关性.田面水中以上3个指标都与有机肥施用量呈正相关性.在施肥后的7d内,DOC的输出潜能降低了32.9%至47.5%.有机肥施用与预期的降雨或灌溉之间的时间间隔相隔一周以上,将能在满足作物营养需求的条件下降低消毒副产物前体物输出的风险,使稻田土壤成为DOC的汇而非DOC输出至周边水体的源.  相似文献   
998.
饮用水中卤化物的研究   总被引:1,自引:0,他引:1  
刘恩栋 《环境与开发》1995,10(4):20-22,42
通过对饮用中卤化物的形成原因的研究,提出了饮用水中卤化物污染的防治途径,以及几种去除的方法。  相似文献   
999.
城市垃圾填埋场植树造林试验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
通过在青岛湖岛垃圾场的现场试验,研究了城市垃圾填埋场上植树造林的方法、适宜树种的筛选以及影响树木成活和生长发育的主要因素。结果指出,垃圾中有机质发酵所产生的甲烷气体是抑制树木成活和生长的关键因素。覆土层除为树木提供支持和生存环境外,还能阻挡甲烷气体的逸出,因此,土层越厚,越有利于树木成活和生长。还对18种木本植物对甲烷气体的耐性进行了筛选。   相似文献   
1000.
若尔盖高原沼泽土壤氧化甲烷的研究   总被引:8,自引:0,他引:8  
若尔盖高原泥炭沼泽土氧化大气 CH4 的速率为 0.97~1.69ng/(g·h),氧化速率随着土壤深度的增加而减小;而泥炭土 CH4 排放速率为0.37~0.61ng/(g·h).2种土壤均具有氧化8000μL/L高浓度CH4的能力,泥炭沼泽土的潜力比泥炭土的大.不同土壤层次氧化甲烷的潜力也有差异,表层土比下层土高.降水减少导致的沼泽水位下降将加强若尔盖高原沼泽土壤氧化 CH4 从而减少沼泽 CH4 排放.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号