首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
  国内免费   6篇
安全科学   9篇
环保管理   3篇
综合类   28篇
基础理论   5篇
社会与环境   2篇
灾害及防治   10篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
21.
22.
青藏高原冬季积雪与河北省夏季降水   总被引:3,自引:0,他引:3  
肖嗣荣  张可慧 《灾害学》1999,14(2):23-27
应用青藏高原地面站积雪观测资料,NOAA卫星观测积雪面积和美国宇航局微波遥感积雪深度等资料进行综合对比分析,确定了青藏高原冬季积雪的年际变化,在此基础上讨论了青藏高原冬季积雪状况对河北降水的影响。结果表明,青藏高原冬季多雪时,当年河北夏季降水往往偏少;青藏高原冬季少雪时,河北夏季降水往往偏多。  相似文献   
23.
利用中分辨率成像光谱仪(MODIS)遥感数据与2018年1月野外实测的28个雪样,综合分析新疆干旱区季节性积雪中黑碳气溶胶浓度(BC)分布特征与气溶胶光学厚度(AOD)等.利用HYSPLIT-4后向轨迹模式获取釆样点逐日的后向轨迹,分析BC的可能传输路径.结果表明:①北疆地区积雪覆盖率从11月份到次年1月份逐渐增加,冬季积雪覆盖率可达到97.5%,冬季AOD平均值为0.173,高值出现在天山北坡经济带区域与东部区域(0.2~0.35),低值区域主要在阿勒泰地区(0.06~0.1).②表层积雪的BC浓度范围为44.08~1949.9ng/g,平均值为536.71ng/g,BC浓度分布特征为:天山北坡经济带BC浓度(913.24ng/g) > 艾比湖东南部区域(816.56ng/g) > 艾比湖北部区域(421.94ng/g) > 艾比湖西部区域(407.97ng/g) > 克拉玛依区域(162.28ng/g) > 古尔班通古特沙漠区域(124.89ng/g) > 阿勒泰地区(98.51ng/g).随着海拔升高积雪中BC浓度有微弱上升,相关系数R2为0.03,随着纬度增加积雪中BC浓度均呈下降趋势,R2为0.255.③艾比湖流域后向轨迹中以博乐-精河-艾比湖向东北方向输送路径为主,对采样点的BC浓度影响较大;天山北坡经济带区域主要以精河-石河子-乌鲁木齐的天山北坡城市群向东北输送路径为主,局地污染较为严重;阿勒泰地区的后向轨迹以俄罗斯南部-哈萨克斯坦北部-东哈萨克斯坦输送路径为主,局地污染贡献较少;克拉玛依区域主要来自哈萨克斯坦东部和西部向东方向的输送,局地污染不明显;沙漠区域主要以西南方向输送路径为主.  相似文献   
24.
为研究三江源区河流流量变化及其可能成因,在1956—2012年水文气象资料基础上,借助Mann-Kendall趋势检验、流量历时曲线等数理统计方法,分析了该区域流量的年际和年内变化,并通过双累积曲线、相关分析和贡献率分析等方法对影响流量变化的因素进行了探讨.结果表明:①近57 a来澜沧江源区和长江源区的年均流量均呈增加趋势,变率分别为0.47和2.12 m3/(s·a),黄河干流流量轻微减少〔-0.60 m3/(s·a)〕,部分支流流量有所增加;河流流量的年内分布有从双峰型向单峰型过渡的趋势.黄河源区高流量和低流量都减少,长江源区高流量和低流量均增加,而澜沧江源区高流量减小、低流量增加.②气温和降水的共同作用导致河流流量的年内分布呈双峰型或单峰型的特点,降水为主导因素,秋季降水量减少导致部分河段流量分布从双峰型向单峰型过渡.③河流流量和降水量的变化基本保持一致.黄河源区和澜沧江源区流量主要受东亚季风和西风控制,而长江源区流量主要受到青藏高原季风和东亚季风的影响.20世纪80年代以来,三江源区0 ℃等温层高度(16.28 m/a,P<0.001)和>0 ℃年积温(7.30 ℃/a,P<0.01)均呈显著增加趋势.在区域快速增温背景下,冰川和积雪消融给河流流量造成的短期增加效应不可持续,由此对水源涵养功能构成严重威胁.  相似文献   
25.
通过分析在玉龙雪山冰川区采集的雪坑样品和部分表层雪样品,对冰川积雪中的大气粉尘沉积特征进行了深入研究.玉龙雪山积雪中粒径介于0.57积雪受局地污染源和中亚粉尘源区的影响较大.雪坑微粒浓度剖面和离子相关性分析表明,玉龙雪山积雪中具有明显的污化层位,且粉尘浓度和化学离子之间有较好的相关性;微粒的体积-粒径分布众数介于3—21μm,粒径分布显示了单结构模式.此外,玉龙雪山积雪中粉尘沉积量相对较高,这跟雪山及周边地区大量裸露的岩石风化物在积雪中的沉积有关.  相似文献   
26.
在高山地区和高海拔地区,氮素是植物生命活动的主要限制因素之一。冬季,这类地区的土壤通常被雪被长时间覆盖。以往的研究证实,雪下土壤氮素动态在维持年际氮循环中起着重要作用。气候变化将改变生物地球化学循环,导致雪被覆盖状况发生改变,从而对冬季土壤氮素动态产生重要影响。然而,迄今为止,对气候变化极其敏感的青藏高原东缘雪下土壤物质转化过程的研究却很少。为了了解不同雪况下土壤矿质氮库水平和净氮矿化变化动态,2010年11~2011年4月在青藏高原东缘用PVC管原位培养土壤,通过人工控制雪被厚度和雪被持续时间的方法,设置不同积雪厚度和积雪周期的9个处理,分别测定其无机氮(NH4+-N和NO3--N)含量,并计算净氮矿化率。结果表明,雪被持续时间可对土壤温度的变化产生明显的影响;随着土壤覆雪厚度和雪被覆盖时间的增加,土壤含水量呈现增长的趋势。土壤无机氮以NH4+-N为主,占总无机氮的69%~86%,而NO3--N含量只占土壤总无机氮的14%~31%。深雪(100 cm和50 cm的积雪覆盖)降低了铵态氮含量,而净氮矿化率无明显变化。不同的积雪覆盖时间(60 d,90 d,150 d)并没有引起土壤氮库的显著变化,说明较早的降雪虽然使土壤有较高的温度和较少的冻融循环,但并不会改变土壤氮库的积累和释放。  相似文献   
27.
近50 a西北干旱区冬季积雪日数变化特征   总被引:1,自引:0,他引:1  
论文基于西北干旱区104个站点1961—2010年的日积雪深度、日平均气温、日降水量数据和NCEP/NCAR数据,利用K-means聚类分析、Mann-Kendall法等方法,对西北干旱区冬季积雪日数的时空变化特征及其变化原因进行分析。结果表明:1)冬季积雪日数大值主要集中在阿尔泰山和准噶尔盆地地区,西辽河流域、鄂尔多斯高原、天山、塔里木、阿拉善高原地区冬季积雪日数相对较少,内蒙古高原地区冬季积雪日数基本呈由高纬地区向低纬地区减少的趋势。2)近50 a,西北干旱区冬季积雪日数呈增加趋势,且各区域主要在1984年发生突变现象。内蒙古高原地区内站点冬季积雪日数变化较大,其他分区内站点的冬季积雪日数基本无变化。3)西北干旱区各分区周期变化主要集中在5、10、25 a左右,其中25 a的周期变化最为明显。4)冬季东亚大槽、南支槽的减弱与西风的增强使西北干旱区降水量增加是导致西北干旱区冬季积雪日数增加的主要原因。  相似文献   
28.
以宁夏高速公路为对象,利用1981—2018年25个常规气象站观测资料及交通相关数据资料,基于GIS、AHP等方法,从致灾因子的危险性、孕灾环境的敏感性、承灾体的易损性三方面进行高速公路路面积雪灾害风险分析与区划研究。结果表明:全区年平均积雪日数在6.5~86.7d,年平均降雪日数在10.3~64.5d,最大积雪深度在8~35cm,自南向北减少(浅),南部山区明显多(深)于北部地区。路面积雪灾害主要出现在冬季、初春和晚秋,大到暴雪级的路面积雪主要出现在秋冬转换的10~11月和冬春交替的3~4月。风险分析与区划研究结果表明,高风险区位于福银高速(G70)、青兰高速(G22)六盘山区东南麓区段;较高风险区位于福银高速(G70)固原市原州区段、青兰高速(G22)固原市隆德西段段、固西高速、彭青高速路段;同心以北的银川市、石嘴山市、吴忠市各路段风险总体较低。  相似文献   
29.
今年3月,应云南省环保局的邀请,我来到向往已久的神圣之地——香格里拉。 刚一下飞机,我就感到一种前所未有的兴奋,机场建在一片山峰之间,峰顶都是白皑皑的积雪,而且积雪面积很大,占据了山体的三分之一,这里海拔4000米左右,名好一幅美丽的雪域风光![第一段]  相似文献   
30.
张子晗  聂禄敏  陆恒 《地球环境学报》2024,15(2):224-234, 305
在气候变暖的背景下,川西高原积雪出现剧烈变化,对地区水循环过程、生态系统以及社会经济带来严重影响。基于MODIS积雪遥感数据以及环境因子数据,通过构建稳定度指标及最大熵模型探讨川西高原不同稳定性积雪的空间分布格局及其驱动因子,并对不同稳定性积雪的适宜分布区进行分析,结果表明:(1)川西高原大多数地区的积雪属于高度不稳定性积雪,其他稳定性积雪在川西高原分布面积较小;(2)川西高原积雪在海拔越高的地方稳定性越好;(3)不同稳定性积雪分布格局的影响因素存在差异,海拔和降水是影响稳定性积雪分布格局的主要因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号