首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1950篇
  免费   256篇
  国内免费   397篇
安全科学   396篇
废物处理   79篇
环保管理   160篇
综合类   1279篇
基础理论   236篇
污染及防治   239篇
评价与监测   21篇
社会与环境   41篇
灾害及防治   152篇
  2024年   33篇
  2023年   98篇
  2022年   124篇
  2021年   120篇
  2020年   85篇
  2019年   96篇
  2018年   58篇
  2017年   62篇
  2016年   68篇
  2015年   80篇
  2014年   124篇
  2013年   99篇
  2012年   99篇
  2011年   126篇
  2010年   94篇
  2009年   107篇
  2008年   151篇
  2007年   134篇
  2006年   131篇
  2005年   113篇
  2004年   91篇
  2003年   93篇
  2002年   87篇
  2001年   79篇
  2000年   38篇
  1999年   57篇
  1998年   32篇
  1997年   28篇
  1996年   25篇
  1995年   31篇
  1994年   11篇
  1993年   10篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
排序方式: 共有2603条查询结果,搜索用时 234 毫秒
101.
响应面法优化胡敏素对Cu2+的吸附及机理研究   总被引:1,自引:1,他引:0  
采用Box-Behnken响应面优化实验设计对胡敏素吸附去除水中Cu~(2+)的过程进行了优化,设定吸附时间、吸附剂用量、pH、温度和Cu~(2+)初始浓度为5个影响因素,Cu~(2+)吸附率为响应值,建立了吸附率与上述因素之间的二次多项式模型,确定最佳吸附条件,对吸附过程的等温模型及吸附机理进行了研究.响应面分析表明,吸附剂用量、pH和Cu~(2+)初始浓度是显著因素.胡敏素对Cu~(2+)吸附的最佳条件为:吸附时间110 min、吸附剂用量2.4 g·L~(-1)、pH=5.4、温度25.0℃、Cu~(2+)初始浓度208 mg·L~(-1).在该条件下,测得胡敏素对Cu~(2+)的吸附率可达到80.78%,吸附符合Langmuir等温线方程.胡敏素表面疏松多孔,有利于其通过物理吸附方式吸附Cu~(2+),同时,胡敏素表面的羟基、羧基和羰基等活性基团可以与Cu~(2+)发生配位络合作用,Na+、Ca~(2+)、Mg~(2+)等与Cu~(2+)发生离子交换作用,从而发生化学吸附.研究结果表明,胡敏素作为一种绿色、高效、廉价的吸附剂,可应用于Cu~(2+)污染废水的治理.  相似文献   
102.
利用3-巯丙基三甲氧基硅烷(MPTMS)作硅烷偶联剂对多壁碳纳米管(MWCNTs)进行改性,制备巯基硅烷改性多壁碳纳米管(SHMWCNTs),并进行了SH-MWCNTs对Cd~(2+)的批量吸附实验.同时,利用扫描电镜(SEM)、X射线光子能量仪(EDS)、红外光谱(FT-IR)对SHMWCNTs进行表征,探究了溶液初始pH、吸附剂投加量、吸附时间、溶液初始Cd~(2+)浓度等因素对吸附效果的影响,分析了吸附动力学特征及吸附等温线特征,初步探讨了吸附机理.SEM、EDS与FT-IR图谱显示,MPTMS已成功接枝到MWCNTs表面,表明SH-MWCNTs制备成功.吸附时间为90 min,pH为4时的吸附效果最佳,吸附量随SH-MWCNTs投加量、Cd~(2+)浓度的增加而增大.吸附动力学和吸附等温线研究表明,SHMWCNTs对Cd~(2+)的吸附动力学符合准二级线性方程,吸附等温线符合Freundlich、Langmuir 2种模型,吸附以单分子层吸附为主,也存在层间扩散的多层吸附.  相似文献   
103.
以三聚磷酸钠作为离子交联剂,合成了一种掺杂聚乙烯醇的壳聚糖小球,采用SEM和FTIR表征了小球的表面性能及官能团分布情况,进一步研究了这种小球对腐殖酸和铜离子的单独吸附行为、连续吸附行为及两者共存状态下的吸附行为,并通过XPS能谱分析了吸附过程的机理.结果表明:在单独吸附过程中,壳聚糖小球与腐殖酸和铜的作用方式主要是通过静电引力和络合作用;在连续吸附过程中,先吸附了腐殖酸的小球,后续对铜离子的吸附效果变弱;而先吸附了铜离子的小球,后续对腐殖酸的吸附能力变强,说明这种小球在吸附过程中可以被连续使用.而在腐殖酸和铜离子共存的吸附实验中发现,壳聚糖小球除了会吸附溶液中的铜离子和腐殖酸外,还导致它们的聚集沉降.  相似文献   
104.
吸附法是去除污水中典型药物及个人护理品(PPCPs)的重要手段之一.在梳理各类吸附剂对典型PPCPs去除效果的基础上,结合吸附剂类型和操作条件评述了不同吸附剂对典型PPCPs的去除效率、吸附机理,及影响其吸附效果的因素.总体而言,目前针对吸附法去除典型PPCPs的研究仍存在一些不足,吸附机理研究尚不成熟.关于吸附法去除...  相似文献   
105.
通过成核/晶化隔离法制备了氯离子型镁铝层状双金属氢氧化物(Mg-Al-Cl-LDH),并用于磷酸盐的吸附;借助扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、X射线光电子能谱(XPS)进行了表征,并探究其吸附磷酸盐的机理.结果表明:当pH为4~7时,Mg-Al-Cl-LDH对磷的吸附效果较好,而在碱性条件下吸附量会下降;磷质量浓度为50mg·L-1,当pH为5时,Mg-Al-Cl-LDH投加量为2g·L-1时,磷去除率可达到100%;共存离子CO32-会对吸附产生一定影响,当CO32-质量浓度为50mg·L-1时,磷去除率由87%降低到63%.Mg-Al-Cl-LDH对磷的吸附过程在前15 min迅速,90min时达到平衡,符合准二级动力学和Sips吸附等温模型,说明主要吸附过程以化学吸附为主,理论最大吸附量为62.46mg·g-1o表征结果表明,Mg-Al-Cl-LDH为典型的六边形层片结构,吸附后依旧保持该结构.Mg-Al-Cl-LDH对磷的吸附机理主要为静电吸引、层间阴离子交换、配体交换过程.  相似文献   
106.
分析了预应力管桩受力破坏的机理和单桩承载力提高的原因,以及预应力管桩作为基坑支护桩的受力特性,并以武汉南国置业有限公司高层公寓综合楼为工程实例,进一步阐明采用预应力管桩作为基坑竖向加固桩,具有明显的经济效益。  相似文献   
107.
为了揭示含磷酸盐(KH2PO4,NH4H2PO4,Ca(H2PO4)2)对聚乙烯粉尘爆炸的抑制作用,通过哈特曼管实验装置和20 L球形爆炸罐,研究含磷酸盐对聚乙烯粉尘爆炸火焰和压力传播特性的抑制效果。采用高速摄影方法记录含磷酸盐对聚乙烯粉尘爆炸火焰传播的影响;采用20 L球形爆炸罐,收集压力传感器数据,分析含磷酸盐对聚乙烯粉尘爆炸压力的影响;采用同步热分析仪研究聚乙烯粉尘和含磷酸盐的热解行为。研究结果表明:含磷酸盐对聚乙烯粉尘爆炸火焰传播特性参数和爆炸压力特性参数均有显著的影响,通过对比得到NH4H2PO4抑制效果相对最好。研究结果可为含磷酸盐在抑爆剂工程应用提供理论基础。  相似文献   
108.
某水电站是澜沧江中、下游梯级开发的关键工程,其进水口高边坡地质条件复杂。通过对该电站进水口边坡的物质组成、结构特征、以及边坡开挖等因素的综合分析研究,阐述了其变形机理,说明此高边坡存在如下变形破坏形式:①楔形体滑动破坏;②扩展式的平面型塌滑和滑移型崩塌破坏;③卸荷松弛变形破坏。采用三维块体分析和有限元数值模拟,分析了这类边坡在开挖过程中的应力变形特征及其变化规律。  相似文献   
109.
相变吸收剂在降低CO2捕集能耗方面具有较大优势,但现有吸收剂普遍存在再生性能差的问题。基于2-氨基-2-甲基-1-丙醇(AMP)的吸收剂再生性能优异,但通常难以发生相变。利用四乙烯五胺(TEPA)作为相变调控剂引入AMP-二乙二醇二甲醚(DGDE)水溶液,构建了具有良好再生性能的新型相变吸收剂AMP-DGDE-TEPA。在最佳配比下,AMP-DGDE-TEPA的吸收负荷可达0.88 mol·mol-1,其中97.6%的CO2富集于溶液下层,下层体积仅占总体积51%。经7次吸收-解吸循环,吸收剂的吸收负荷仍能保持0.63 mol·mol-1,再生效率为71.6%。13C核磁共振结果表明,AMP与CO2反应生成易于分解的碳酸氢盐,因而吸收剂具有良好的再生性能;而TEPA的引入可使系统中生成稳定的质子化TEPA和氨基甲酸盐。质子化TEPA和氨基甲酸盐具有高极性,可打破吸收剂原有的均相状态,促使吸收剂发生液-液相变。相比于DGDE,H2O和极性反应产物之间具有更强的相互作用力,这些物质聚集形成CO...  相似文献   
110.
底泥中营养物质及其他污染物释放机理综述   总被引:8,自引:0,他引:8  
水体底泥(沉积物)污染,是世界范围内的一个重要环境问题.其污染物主要通过大气沉降、废水排放、水土流失、雨水淋溶与冲刷进入水体,最后沉积到底泥中并逐渐富集,使底泥受到严重污染.总结了底泥中氨氮、重金属的影响因素及释放机理,也指明了持久性有机污染物释放机理研究不足的现状,提出对其释放机理研究的重要性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号