首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   119篇
  国内免费   659篇
安全科学   78篇
废物处理   48篇
环保管理   63篇
综合类   1120篇
基础理论   387篇
污染及防治   133篇
评价与监测   95篇
社会与环境   9篇
  2024年   34篇
  2023年   76篇
  2022年   76篇
  2021年   109篇
  2020年   67篇
  2019年   73篇
  2018年   44篇
  2017年   47篇
  2016年   55篇
  2015年   77篇
  2014年   99篇
  2013年   60篇
  2012年   71篇
  2011年   87篇
  2010年   94篇
  2009年   84篇
  2008年   87篇
  2007年   87篇
  2006年   71篇
  2005年   46篇
  2004年   43篇
  2003年   38篇
  2002年   32篇
  2001年   23篇
  2000年   45篇
  1999年   27篇
  1998年   26篇
  1997年   31篇
  1996年   35篇
  1995年   27篇
  1994年   21篇
  1993年   29篇
  1992年   17篇
  1991年   30篇
  1990年   29篇
  1989年   27篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
排序方式: 共有1933条查询结果,搜索用时 359 毫秒
261.
铜和镉对蝌蚪的联合毒性研究   总被引:3,自引:0,他引:3  
研究了铜和镉对蝌蚪的急性毒性和联合毒性,结果表明,Cu^2 对蝌蚪的24h,48h、96h和LC50分别为0.201,0.138和0.118mg/L;Cd^2 对蝌蚪的24h,48h和96h的LC50分别为32.1、23.3和18.9mg/L,Cu^2 和Cd^2 共存对蝌蚪的24h,48h和96h联合毒性相加指数(AI)分别为1.03、1.12和1.20。  相似文献   
262.
不同部位梧桐生物质炭对水溶液中镉吸附的机理   总被引:1,自引:0,他引:1  
为了探究梧桐不同部位废弃物所制备的生物质炭(皮、枝、叶)对Cd2+的吸附效率和稳定修复的机理,以此为园林废弃物炭化利用在重金属污染修复方面的应用提供科学依据.利用实验室模拟法,通过高温煅烧法制备梧桐不同部位生物质炭,采用元素分析仪、比表面积及孔隙分析(BET)、X射线衍射仪(XRD)、扫描电镜/能谱(SEM/EDS)及衰减全反射红外光谱(ATR-IR)等技术研究不同反应时间、重金属浓度和溶液初始pH条件下生物质炭对Cd2+吸附效果的影响,并运用四步萃取法和脱附实验分析生物质炭上Cd2+的吸附形态和稳定性.3种生物质炭都在8 h左右达到吸附平衡,最终吸附量依次为树皮炭>枝条炭>叶片炭;溶液初始浓度为0.5—2 g·L-1时Cd2+的吸附量呈增长趋势,在2.5—3g·L-1时逐渐平缓;生物质炭Cd2+吸附量均随着pH的升高而升高,但在pH值为5—8时,吸附的趋势逐渐平稳;树皮炭的酸溶态和非生物利用态的稳定Cd形态要高于枝条炭和叶片炭;比表面积不是影响梧桐生物质炭吸附Cd2+的主要影响因素,吸附动力学,ATR,XRD和重金属形态萃取均证实Cd碳酸盐类矿物生成是主导吸附机理;3种生物质炭的脱附量在4 h后逐渐趋于平衡,其中脱附量最大为叶片炭,最小为树皮炭.梧桐不同部位的初始性质对生物质炭吸附Cd2+具有明显的影响,其中梧桐皮具备更高的吸附量和重金属稳定形态,并且相比其他种类生物质炭有明显优势.因此,从吸附效果和生产成本的角度,本研究建议以梧桐皮为主,枝条和叶片为辅的生物质炭对重金属Cd进行修复治理.  相似文献   
263.
对农作物污染风险进行预测具有重大意义.基于贝叶斯定理及数据分布特征,建立了贝叶斯风险预测模型,并使用区域大田调查土壤-小麦重金属含量数据,预测小麦籽粒Cd和Pb超标风险并验证该模型的准确度.结果表明,该模型预测小麦籽粒Cd超标风险时相对偏差较小,以小麦籽粒Cd含量为变量的预测相对偏差仅为(2.66±1.87)%,以土壤DTPA-Cd含量和土壤Cd全量为变量时预测相对偏差则分别为(5.11±3.77)%和(5.88±3.87)%, 3个变量均能使预测结果与真实超标概率的平均相对偏差小于10%.预测小麦籽粒Pb超标风险时,仅小麦籽粒Pb含量的预测相对偏差小于10%.数据来源、数据分布特征和变量的选择是影响贝叶斯风险预测模型预测相对偏差的重要因素.该模型基于大田数据的先验分布,能够有效反映大田生产条件下小麦籽粒重金属与土壤因子间的相互关系,预测较准确,具有应用潜力.  相似文献   
264.
在PDA 平板培养条件下,研究Cd、Pb 及其复合污染对平菇菌丝体生长的影响以及平菇菌丝体对生长基质中Cd、Pb 的生物富集作用.结果表明,在实验浓度范围内,菌丝生长势、菌落直径和菌丝体干重等均随着重金属浓度的增大而减弱(小)或降低.平菇菌丝体对Cd、Pb均具有生物富集作用,并且随着重金属浓度的增大菌丝体中重金属含量逐渐增大.Cd、Pb 复合污染能促进平菇菌丝体对Pb 的吸收,而抑制对Cd 的吸收.  相似文献   
265.
本文采用分级提取法,并在优化条件下进行ICP-MS测定,考察了黄铁矿及其烧渣中镉、铊和铅的形态,以掌握镉、铊、铅的释放和迁移的相关信息,间接地评价黄铁矿及其烧渣中镉、铅和铊的环境污染效应.  相似文献   
266.
煤矸石风化物不同粒级中重金属镉含量及其形态变化   总被引:1,自引:0,他引:1  
对抚顺西露天矿煤矸石山表层煤矸石风化母岩进行多点取样,风化物筛分成>2 mm、2~0.25 mm和<0.25 mm等3个粒级,分析测定了矸石山表层母岩及其风化物不同粒级中Cd含量及其形态变化特征.结果表明:煤矸石母岩及其风化物中cd含量超过土壤环境质量2级标准,页岩、泥岩及其风化物pH值7.2~8.6,但燃后泥岩pH值4.9.碳质页岩2~0.25 mm粒级风化物中Cd损失最多,为73.6%;<0.25 mm细粒级Cd损失较少,为17.0%,这与细颗粒的表面吸附作用有关;泥岩及其各粒级风化物Cd元素不易损失,其Cd含量变化也相对较小;但燃后泥岩风化物中的Cd较容易损失.煤矸石风化物各样品类型中的Cd均以残渣态为主,可还原态和弱酸可提取态所占比例次之,可氧化态所占比例最小.弱酸可提取态Cd在细颗粒风化物中所占比例较高.  相似文献   
267.
采用等温平衡法,测定了锌、钾、钙两两共存下赤红壤镉的吸附量,应用Freundlich方程分析了土壤镉的吸附特征,并计算了镉的分配系数(KdCd).结果表明,用Freundlich吸附等温方程拟合土壤镉的吸附特征具有很好的相关性.与单钠体系相比,钙钾、钙锌及锌钾共存均使赤红壤吸附镉的能力减弱,赤红壤的总吸附容量(Kf值)分别降低了56.5%、96.73%和91.3%.不同离子两两共存下改变土壤吸附镉能力的程度不同,钙钾共存的Kf值明显高于钙锌、钾锌共存,对Kf值的影响程度的次序为:锌钾≈钙锌,钙钾.钙锌、钾共存时,增加吸附体系中锌质量浓度将明显降低镉的分配系数(KdCd值),共存离子中锌含量与KdCd值呈明显负相关.钙锌、钾锌以不同比例与镉共存时,锌含量高低是制约KdCd值大小的主要因子.  相似文献   
268.
闫莎莎  张文泉 《化工环保》2012,40(4):436-441
以滕南煤田某煤矿风化煤矸石为研究对象,应用主成分分析法分析了煤矸石粒径对Pb,Cr,Cd溶出浓度的影响,应用回归分析法分析了浸溶时间与Pb,Cr,Cd溶出浓度的关系特征。实验结果表明:模拟湿地浸溶条件下,煤矸石中Pb,Cd,Cr溶出浓度均超出或接近Ⅲ类水体水质标准,对水环境存在污染风险;煤矸石粒径对Pb,Cd,Cr溶出浓度存在影响,粒径越小则Pb、Cr、Cd溶出浓度越大,粒径小于8.0 cm的煤矸石浸溶贡献较大。建立了表征Pb,Cr,Cd溶出浓度与浸溶时间对数(以10为底)关系的一元三次多项式回归方程,经检验均具有显著性。  相似文献   
269.
采用内耦合大块液膜分离技术,通过考察料液相pH值、温度、载体浓度以及解析相组成对Cd(II)迁移速率的影响,研究了以烷基膦酸为流动载体的液膜中镉的迁移规律,并建立了渗透系数与pH值、温度以及载体浓度之间的关系方程.结果表明,Cd(II)以CdR22HR(Kex值为3.58106)配合物形式在液膜中传输,增加载体浓度或升高温度,迁移速率明显升高.最佳传质条件为料液相pH值4.5~5.1、载体浓度5.0%~7.5%、温度298~308K.  相似文献   
270.
稻、麦籽实中Cd的结合形态   总被引:19,自引:0,他引:19       下载免费PDF全文
对污染区稻、麦籽实中Cd的存在形态进行了分析,结果表明,在籽实主要营养成分以蛋白质中结合Cd的比例最高;根据籽实中蛋白质在各种溶剂中溶解度不同,区分清蛋白、醇溶谷蛋白、球蛋白及谷蛋白,对其中Cd的分析表明,以球蛋白和谷蛋白结合Cd的比例为高;通过Sephadex G75柱层析对Tris-HCl可溶性组分的分离分析表明,Cd-蛋白质结合体的表观分子量为54.5103和5.5103,并对其氨基酸组成进行了分析.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号