首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1493篇
  免费   149篇
  国内免费   215篇
安全科学   322篇
废物处理   65篇
环保管理   206篇
综合类   878篇
基础理论   102篇
污染及防治   131篇
评价与监测   61篇
社会与环境   24篇
灾害及防治   68篇
  2024年   20篇
  2023年   75篇
  2022年   72篇
  2021年   88篇
  2020年   58篇
  2019年   67篇
  2018年   40篇
  2017年   42篇
  2016年   48篇
  2015年   69篇
  2014年   128篇
  2013年   99篇
  2012年   101篇
  2011年   86篇
  2010年   84篇
  2009年   90篇
  2008年   108篇
  2007年   95篇
  2006年   85篇
  2005年   72篇
  2004年   54篇
  2003年   34篇
  2002年   41篇
  2001年   28篇
  2000年   29篇
  1999年   30篇
  1998年   12篇
  1997年   19篇
  1996年   14篇
  1995年   17篇
  1994年   6篇
  1993年   13篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   1篇
排序方式: 共有1857条查询结果,搜索用时 93 毫秒
331.
采用好氧堆肥工艺处理高含水率城市生活垃圾和脱水污泥。高含水率垃圾(含水率≥65%)经过一段时间静置预处理,含水率降至55%左右,破碎筛分,取筛下物和脱水污泥进行好氧堆肥。结果显示预处理垃圾和污泥在质量比1~3之间时,堆肥过程可以达到卫生化和稳定化的处理要求,质量比为1时升温速度快,堆肥周期短,有较好的堆肥效果;回用部分处理后堆肥可以大大缩短堆肥启动时间。  相似文献   
332.
以人工配制高氨氮低碳氮比(C/N)废水为进水,采用膜生物工艺,通过控制亚硝化池内温度为28~30℃,溶解氧浓度为0.5 mg/L,水力停留时间为12 h,pH为7.8~8.0,进水氨氮浓度为200 mg/L、CODCr为40 mg/L,在亚硝化池中成功实现了C/N为1∶5条件下废水的亚硝化。经过14 d的运行时间,污泥龄控制在100 d,在膜生物反应器(MBR反应器)中得到了稳定的亚硝酸盐氮积累。将氨氮浓度分别提高至400和800 mg/L的情况下,其亚硝化菌的耐受浓度负荷冲击能力均较强。  相似文献   
333.
降膜法脱氨氮的技术可行性及影响因素浅析   总被引:1,自引:0,他引:1  
对煤气化废水的特性和处理现状进行了阐述和分析,总结了降膜技术在煤气化高氨氮废水中的脱氮效果和液泛气速、膜厚、pH值、温度的关系。研究表明,降膜技术可将氨氮去除率提高到95%以上,同时降低调整pH值的药剂成本,并有效缓解结垢现象,在类似工业废水处理项目中具有较好的推广应用价值。  相似文献   
334.
本文主要分析了高含硫气井点火时间的影响.首先分析国内某重大高含硫井喷事故的调查结果[1],其次采用大涡模拟方法对井喷气体扩散进行模拟,并将计算结果与现场实际调查结果进行对比.通过计算不同点火时间在事故中造成的灾难后果,得出点火时间对于灾难的影响.通过计算不同的气象条件下的扩散距离,提出15min的点火时间标准.  相似文献   
335.
广西高镉异常区水田土壤Cd含量特征及生态风险评价   总被引:5,自引:15,他引:5  
宋波  王佛鹏  周浪  吴勇  庞瑞  陈同斌 《环境科学》2019,40(5):2443-2452
本研究调查了广西高镉异常区水田土壤中重金属Cd的含量水平,评估其对环境的潜在生态风险.通过初步筛查和详细调查两部分,分批次采集高镉异常区土壤样品共912件,测定土壤Cd含量,并运用单因子污染指数法和潜在风险指数法对水田土壤Cd污染程度及潜在风险进行评价.结果表明:①初查中自然土壤、水田土壤和旱地土壤Cd几何均值分别为0. 915、0. 591和0. 593 mg·kg~(-1).②详查中土壤p H为4. 6~8. 7,介于酸性和弱碱性间.若以《土壤环境质量标准》(GB15618-2018)为标准,平果县、天等县、大新县、隆安县和柳城县水田土壤样点Cd超标严重,融水县水田土壤样点无污染;以土壤基线值为评价标准,田东县、柳城县和融水土壤样点中Cd均为无污染状态;田阳县、平果县、天等县、大新县、隆安县和融安县水田土壤Cd处于轻度-中度污染的比例分别为:4. 2%、3. 7%、14. 9%、2. 6%、7. 1%和1. 4%.③9个县市水田土壤中Cd呈现不同级别潜在生态风险.天等县、大新县和隆安县部分水田土壤样点Cd处于高等生态风险,比例为4. 3%、2. 6%、2. 4%;田阳县、平果县、融安县和柳城县水田土壤Cd表现为中-中高等潜在风险;田东县和融水县处于低潜在生态风险.总体上,研究区水田土壤中Cd整体偏高,长此以往可能会对水稻安全种植产生影响,最终对当地居民产生健康威胁,应引起重视.建议开展对研究区土壤镉生物有效性和水稻镉累积状况研究,以便科学合理地评估其生态风险和健康风险.  相似文献   
336.
利用聚丁二酰亚胺对聚氨酯泡沫体进行化学改性处理,研究改性载体固定化微生物处理高氨氮模拟废水的效果。结果表明:当聚氨酯单元与聚丁二酰亚胺单元摩尔比为10∶1时,对泡沫进行改性后聚氨酯泡沫载体亲水性能良好,且具有较高的微生物负载量。改性后泡沫体上具有化学活性的官能团增加,有利于通过载体结合法固定化微生物细胞;,改性后的聚氨酯泡沫体作为微生物固定化载体用于模拟废水处理时,对主要污染指标呈现良好的污染物去除效果。  相似文献   
337.
袁强军  张宏星  陈芳媛 《环境科学》2020,41(10):4661-4668
为了研究好氧颗粒污泥系统处理低碳氮比废水的长期运行稳定性,采用低碳氮比(C/N)条件下逐步增加碳氮负荷的进水方法,分别在反应器A和B中接种好氧颗粒污泥,考察其长期运行过程中的理化性质、处理性能及应对冲击负荷的稳定性.其中A反应器的碳氮比一直维持在2,而B则由4逐步降至2.结果表明,在4℃存储30d的好氧颗粒污泥,经过25d的培养,其活性基本恢复,A、B反应器化学需氧量(COD)和氨氮(NH4+-N)的去除效率均达到90%以上.在其后的稳定阶段,B反应器COD和NH4+-N去除率达到90%以上,实现了完全硝化;而A反应器COD去除率仅80%左右,虽然NH4+-N去除率最终也达到90%以上,但仅实现短程硝化.在冲击负荷阶段,A和B反应器COD去除率仍维持在80%以上,但是NH4+-N去除受到很大冲击.A反应器NH4+-N去除效率恶化,B反应器仅实现了部分硝化.整个运行过程,好氧颗粒污泥的物理性质受到的影响不大,A和B反应器的污泥容积指数(SVI30)分别维持在60 mL ·g-1和75 mL ·g-1左右,混合液悬浮固体(MLSS)在5g ·L-1和3.7g ·L-1左右.颗粒污泥微生物群落分析表明,B反应器相对于A反应器丰富度和多样性更高.同时B反应器具有更高丰度的Zoogloea属,在颗粒中能产生更多的胞外蛋白促使颗粒结构更稳定,保证系统的长期稳定运行.以上结果表明,与C/N为2的好氧颗粒污泥系统相比,C/N为4的系统脱碳硝化效果好,抗冲击负荷能力强,更有利于颗粒污泥的长期稳定运行.  相似文献   
338.
长庆油田学一联合站油田采出水经三级处理后,出水水质达到低渗透、特低渗透油田回注指标,但不久水质变浑浊,并伴有大量的红棕色沉淀物生成。取样分析,红棕色沉淀物为氢氧化铁,水中pH值为6.0~6.5,铁含量在50~100mg/L。文章针对含铁量过高为主的高矿化度油田采出水可能带来的危害进行分析,并提出解决方法。  相似文献   
339.
通过对某高含硫气田的高含硫、高压、多山地复杂环境等生产特点及采气厂、净化厂进行调查研究,制定一套科学的高含硫气田清洁生产评价指标体系,判断高含硫气田清洁生产潜力,选择更科学、更环保、更符合现阶段清洁生产要求的工艺设备、技术以及管理体系,为确认审核重点提供参照,推动实现高含硫气田的可持续发展。  相似文献   
340.
基于高光谱的土壤全氮含量估测   总被引:10,自引:0,他引:10  
基于高光谱(350~2 500 nm)数据,研究了我国中、东部地区5种主要类型土壤全氮含量与高光谱反射率之间的定量关系,构建了基于偏最小二乘法(PLS)、BP神经网络(BPNN)和特征光谱指数的土壤全氮含量估算模型。结果表明,以500~900 nm、1 350~1 490 nm区域波段反射率经Norris滤波平滑后的一阶导数光谱为基础,构建的基于PLS和BPNN的土壤全氮含量估算模型精度较高,建模决定系数分别为0.81和0.98;独立观测资料检验结果显示,模型预测决定系数分别为0.81和0.93,均方根误差RMSE为0.219 g·kg-1和0.149 g·kg-1,相对分析误差RPD为2.28和3.36,说明PLS和BPNN模型对土壤全氮含量具有较高的预测精度。在光谱指数的分析中,基于近红外872 nm和1 482 nm 两个波段的差值光谱指数DI(NDR872,NDR1482)对土壤全氮含量最敏感,建模决定系数、预测决定系数、RMSE和RPD分别为0.66、0.53、0.31 g·kg-1和1.60。比较而言,三种方法估算土壤氮含量的精度顺序为BPNN模型>PLS>DI(NDR872,NDR1482),基于PLS和BPNN两种方法建立的土壤全氮含量高光谱估测模型具有较高的精度,可以用来精确估算土壤全氮含量;基于两波段构建的DI(NDR872,NDR1482)预测效果低于前两者,但也可以用来粗略估测土壤中的全氮含量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号