首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   67篇
  国内免费   355篇
安全科学   26篇
废物处理   69篇
环保管理   108篇
综合类   702篇
基础理论   79篇
污染及防治   207篇
评价与监测   83篇
社会与环境   4篇
  2023年   10篇
  2022年   28篇
  2021年   23篇
  2020年   32篇
  2019年   31篇
  2018年   40篇
  2017年   35篇
  2016年   51篇
  2015年   67篇
  2014年   107篇
  2013年   101篇
  2012年   89篇
  2011年   74篇
  2010年   46篇
  2009年   71篇
  2008年   56篇
  2007年   51篇
  2006年   62篇
  2005年   38篇
  2004年   35篇
  2003年   30篇
  2002年   22篇
  2001年   28篇
  2000年   23篇
  1999年   14篇
  1998年   15篇
  1997年   20篇
  1996年   20篇
  1995年   10篇
  1994年   11篇
  1993年   13篇
  1992年   13篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1278条查询结果,搜索用时 15 毫秒
61.
微波消解-原子荧光法测定海洋沉积物中As的研究   总被引:2,自引:1,他引:1  
研究了微波消解海洋沉积物中的As,在比较几种不同的酸消解体系后,得到适合海洋沉积物分析的酸消解体系.与传统的湿法消解比较,测试结果无显著性差异.微波消解具有快速高效、试剂用量少、空白值低、样品不易挥发等优点,已成为海洋沉积物样品前处理的有效手段.  相似文献   
62.
Anaerobic treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor(ATFBR) with a mesoporous granular activated carbon(GAC)as a support material.The experimental protocol was defined to examine the effect of the maximum organic loading rate(OLR),hydraulic retention time(HRT),the efficiency of the reactor and to report on its steady- state performance.The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m~3.d).The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m~3/(m~3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m~3.d),the COD removal efficiency decreased.Also an artificial neural network(ANN) model using multilayer perceptron(MLP)has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data,the experimental values obtained have been used.The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data.The mean square error(MSE)was found to be only 0.0146.  相似文献   
63.
Pistachio processing wastes create significant waste management problems unless properly managed. However, there are not well-established methods to manage the waste generated during the processing of pistachios. Anaerobic digestion can be an attractive option not only for the management of pistachio processing wastes but also producing renewable energy in the form of biogas. This study investigated anaerobic digestibility and biogas production potential of pistachio de-hulling waste from wet de-hulling process. Best to our knowledge, this is the first report on biogas production from pistachio de-hulling waste. The results indicated that (1) anaerobic digestion of pistachio de-hulling wastewater, solid waste, and their mixtures in different ratios is possible with varying levels of performance; (2) 1 L of de-hulling wastewater (chemical oxygen demand concentration of 30 g/L) produced 0.7 L of methane; (3) 1 L of de-hulling wastewater and 20 g of pistachio de-hulling solid waste produced 1.25 L of methane; and (4) 1 g of de-hulling solid waste produced 62.6 mL of methane (or 134 mL of biogas).  相似文献   
64.
A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok.  相似文献   
65.
Improvement of the activity of anaerobic sludge by low-intensity ultrasound   总被引:1,自引:0,他引:1  
This paper aims to study the enhancement effect of low-intensity ultrasound on anaerobic sludge activity and the efficiency of anaerobic wastewater treatment. Dehydrogenate activity (DHA) and the content of coenzyme F(420) were detected to indicate the change of activity of anaerobic sludge induced by ultrasound at 35 kHz. Single-factor and multiple-factor optimization experiments showed that the optimal ultrasonic intensity and irradiation period were 0.2 W/cm(2) and 10 min, respectively, and the biological activity was enhanced dramatically under the optimal condition. The chemical oxygen demand (COD) removal efficiency was increased by ultrasonic treatment and the COD in the effluent was 30% lower than that of the control (without exposure). The hypothetical mechanism of biological activity enhancement by ultrasound was also discussed according to the results.  相似文献   
66.
微量金属元素及其配合物对厨余垃圾甲烷发酵的影响   总被引:4,自引:0,他引:4  
生物可利用的微量金属元素不仅能够保证污染物以最大的速率转化,而且还可以使某些特殊的转化得以发生,并提高微生物对有毒污染物质的耐受能力。在研究厨余垃圾总固体浓度(total solid, TS)、接种量和C/N比对厨余垃圾厌氧发酵影响的基础上,重点探讨微量金属元素钴及其配合物丝氨酸对厨余垃圾厌氧发酵甲烷产量及关键酶含量的影响。结果表明,当TS为0.5%、接种污泥量为100 mL/L和C/N比为20∶1时,厨余垃圾厌氧发酵的甲烷产率较高,为367 mL/g COD;添加2 μmol/L的微量金属元素钴-配合物丝氨酸时,甲烷产率则提高到432 mL/g COD,相应地,辅酶M的含量由空白实验的41.21 μmol/g VSS提高到54.64 μmol/g VSS,辅酶F420的含量由0.31 μmol/g VSS提高到0.48 μmol/g VSS。  相似文献   
67.
过氯乙烯滤膜采样-酸消解-钼蓝光度法测定磷酸雾   总被引:1,自引:0,他引:1  
建立了过氯乙烯滤膜采样 -酸消解 -钼蓝分光光度法测定磷化车间磷酸雾的监测方法。实验室模拟采样的捕集效率为 95 7%~ 99 1 %。单个实验室对含 5μg和 1 5μg样品进行多次测定 ,其相对标准差小于 5% ,样品加标回收率为 98 2 %~ 1 0 0 5% ,方法检测限为 0 0 0 7mg/m3。对标样测定 ,结果均在给定值范围内。用该法与等离子发射光谱法(ICP)对 5个样品进行比对测定 ,结果均令人满意。  相似文献   
68.
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR, with a total volume of 7.2L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358+/-110mg/L. The average effluent COD values were 121+/-31, 208+/-54, 233+/-52, and 227+/-51mg/L, for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52+/-0.05, 0.37+/-0.05, 0.80+/-0.04, and 0.30+/-0.02h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86mg COD/mgVS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor's operational phase. In addition, findings on the microbial community were associated with the reactor's performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found on its surface. Based on the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the most suitable material showing the best performance in terms of efficiency of solids and COD removal.  相似文献   
69.
Improving biodegradability of PVA/starch blends is a reality already documented by a number of works. Admittedly, mechanical properties of products (for example, tensile strength) are somewhat worse, but suitable composition optimizing or chemical modifying of starch may eliminate the problem to a large degree. This work is an attempt to find another potential effect influencing biodegradability, that of technological procedure for producing films from these blends on an extruder. The procedure with a so-called pre-extrusion step (two-stage) and dry-blend (single-stage) produced blends of slightest differences in achieved biodegradability (virtually within limits of experimental error) in aerobic (76 vs. 79%) as well as anaerobic breakdown (48 vs. 52%). Conversely, morphological analysis exhibited superior homogeneity of films prepared by the two-stage process; their tensile strength was also higher.  相似文献   
70.
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号