首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  国内免费   48篇
安全科学   3篇
废物处理   3篇
环保管理   4篇
综合类   54篇
基础理论   26篇
污染及防治   24篇
评价与监测   2篇
  2023年   6篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   9篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
81.
Bacterial community varied spatially in sediments from the urban river network. • Key environmental factors shaping bacterial community were detected by RDA. Bacterial co-occurrence networks changed at different levels of nutrient and metal. • Potential indicator species were selected to predict pollution risk in sediment. Microbial communities in sediment are an important indicator linking to environmental pollution in urban river systems. However, how the diversity and structure of bacterial communities in sediments from an urban river network respond to different environmental factors has not been well studied. The goal of this study was to understand the patterns of bacterial communities in sediments from a highly dense urbanized river network in the lower Yangtze River Delta by Illumina MiSeq sequencing. The correlations between bacterial communities, the environmental gradient and geographical distance were analyzed by redundancy analysis (RDA) and network methods. The diversity and richness of bacterial community in sediments increased from upstream to downstream consistently with the accumulation of nutrient in the urban river network. Bacterial community composition and structure showed obvious spatial changes, leading to two distinct groups, which were significantly related to the characteristics of nutrient and heavy metal in sediments. Humic substance, available nitrogen, available phosphorus, Zn, Cu, Hg and As were selected as the key environmental factors shaping the bacterial community in sediments based on RDA. The co-occurrence patterns of bacterial networks showed that positive interaction between bacterial communities increased but the connectivity among bacterial genera and stability of sediment ecosystem reduced under a higher content of nutrient and heavy metal in average. The sensitive and ubiquitous taxa with an overproportional response to key environmental factors were detected as indicator species, which provided a novel method for the prediction of the pollution risk of sediment in an urban river network.  相似文献   
82.
Zhang WH  Huang Z  He LY  Sheng XF 《Chemosphere》2012,87(10):1171-1178
Bacterial communities in the rhizosphere soils of metal tolerant and accumulating Chenopodium ambrosioides grown in highly and moderately lead-zinc mine tailings contaminated-soils as well as the adjacent soils with low metal contamination were characterized by using cultivation-independent and cultivation techniques. A total of 69, 73, and 83 bacterial operational taxonomic units (OTUs) having 84.8-100% similarity with the closest match in the database were detected among high, moderate, and low-contamination soil clone libraries, respectively. These OTUs had a Shannon diversity index value in the range of 4.06-4.30. There were 9, 10, and 14 bacterial genera specific to high, moderate, and low metal-contaminated soil clone libraries, respectively. Phylogenetic analysis showed that the Pb-resistant isolates belonged to 8 genera. Pseudomonas and Arthrobacter were predominant among the isolates. Most of the isolates (82-86%) produced indole acetic acid and siderophores. More strains from the highly metal-contaminated soil produced 1-aminocyclopropane-1-carboxylate deaminase than the strains from the moderately and lowly metal-contaminated soils. In experiments involving canola grown in quartz sand containing 200 mg kg−1 of Pb, inoculation with the isolated Paenibacillusjamilae HTb8 and Pseudomonas sp. GTa5 was found to significantly increase the above-ground tissues dry weight (ranging from 19% to 36%) and Pb uptake (ranging from 30% to 40%) compared to the uninoculated control. These results show that C. ambrosioides harbor different metal-resistant bacterial communities in their rhizosphere soils and the isolates expressing plant growth promoting traits may be exploited for improving the phytoextraction efficiency of Pb-polluted environment.  相似文献   
83.
We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3- in the soil.  相似文献   
84.
The study aims to identify the potential acute effects of suspended aluminum nitride (AlN)nanoparticles (NPs) on soluble microbial products (SMP) of activated sludge. Cultured activated sludge loaded with 1, 10, 50, 100, 150 and 200 mg/L of AlN NPs were carried out in this study. As results showed, AlN NPs had a highly inverse proportionality to bacterial dehydrogenase and OUR, indicating its direct toxicity to the activated sludge viability. The toxicity of AlN NPs was mainly due to the nano-scale of AlN NPs. In SMP, AlN NPs led to the decrease of polysaccharide and humic compounds, but had slight effects on protein. The decrease of tryptophan-like substances in SMP indicated the inhibition of AlN NPs on the bacterial metabolism. Additionally, AlN NPs reduced obviously the molecular weight of SMP, which might be due to the nano-scale of AlN.  相似文献   
85.
Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning.  相似文献   
86.
Ion-exchange polymer and modified carbonization bacterial cellulose(CBC) electrodes were fabricated using varying amounts of cation-exchange polymers(glutaric acid(GA) and sulfosuccinic acid(SSA)) and assembled within an asymmetric capacitive deionization unit(p-CDI).The performance of selective NO_2~-electro-adsorption was studied.The AC/CBCSSA group showed a better salt adsorption capacity(14.56 mg/g) and nitrite removal efficiency(71.01%) than the AC/CBC-GA(10.72 mg/g,47.83%) and AC/AC(4.81 mg/g,12.74%)groups.It was confirmed that the CBC-SSA/GA electrodes enhanced nitrite selectivity and increased the adsorption capacity,and the total amounts of adsorbed anions increased when the applied voltage was increased from 0.8 to 1.2 V,while the molar fraction of nitrate decreased.The competitive and preferential adsorption of anions was further investigated using different binary solutions of anions and occurred in the following sequence:NO_2~- SO_4~(2-) NO_3~- F~-≈Cl~-.Furthermore,the p-CDI units were applied to remove nitrite in real wastewater samples,and the results showed that they had excellent reusability and application for use in dyeing wastewater treatment.  相似文献   
87.
The performance of biodegradation of organic pollutants in soil often depends on abiotic conditions and the bioavailability of these pollutants to degrading bacteria. In this context, bacterial dispersal is an essential aspect. Recent studies on the potential promotion of bacterial dispersal by fungal hyphae raised the idea of specifically applying fungal networks to accelerate bacterial degradation processes in situ. Our objective is to investigate these processes and their performance via simulation modelling and address the following questions: (1) Under what abiotic conditions can dispersal networks significantly improve bacterial degradation? and (2) To what extent does the spatial configuration of the networks influence the degradation performance? To answer these questions, we developed a spatially explicit bacterial colony model, which is applied to controlled laboratory experiments with Pseudomonas putida G7 organisms as a case study. Using this model, we analyzed degradation performance in response to different environmental scenarios and showed that conditions of limited bacterial dispersal also limit degradation performance. Under such conditions, dispersal networks have the highest potential for improving the bioavailability of pollutants to bacteria. We also found that degradation performance significantly varies with the spatial configuration of the dispersal networks applied and the time horizon over which performance is assessed. Regarding future practical applications, our results suggest that (1) fungal networks may dramatically improve initially adverse conditions for biodegradation of pollutants in soil, and (2) the network's spatial structure and accessibility are decisive for the success of such tasks.  相似文献   
88.
We investigated the influence of the mineralogical composition of marine sediments on bacterial activity in experimental microcosms. Calcite and quartz were added to natural marine sediments and microbial response in terms of total bacterial abundance and biomass, β-D-glucosidase exo-enzymatic activity and bacterial incorporation of a radio-labelled (3H-leucine) substrate were investigated for a period of one month. We report here that after 15 days the mineralogical composition of the sediment (calcite vs. quartz) had an impact on bacterial abundance and activity (reduced for ca 15% and 56%, respectively). However, such impact was mitigated or even disappeared in high organic nutrient conditions.  相似文献   
89.
By the 454 pyrosequencing technology, this research compared the bacterial communities in poplar plantation rhizosphere and bulk soil for an accurate understanding of bacterial community colonization in the two soil environments. The species annotation showed that rhizosphere soil contained 145 bacterial genera and bulk soil contained 141 bacterial genera, with 8 common genera shared by both at a relative abundance of more than 4%. The 8 genera in common were Acidobacterium GP1, Acidobacterium GP3, Acidobacterium GP6, Gemmatimonas, Bradyrhizobium, Burkholderia, Streptomyces and Acidobacterium GP4. The relative abundance of the same bacterial community was significantly different between rhizosphere and bulk soil environments. Alpha diversity analysis showed that the bacterial community diversity of rhizosphere soil was higher than that of bulk soil, but the difference was not significant. The results of bacterial communities sorting could reflect the variation of soil bacterial communities from rhizosphere to the bulk and the spatial variation among different sampling points, indicating a contribution of about 21.2% variance of bacterial communities by the effect of rhizosphere. Beta diversity analysis showed great difference between rhizosphere and bulk soil samples in bacterial community composition. There were 15 genera specific to rhizosphere soil and 11 to bulk soil. The abundance of 23 genera, mainly cellulose degrading bacteria and nitrogen-fixing bacteria, changed significantly. Selectivity of root to rhizosphere microorganisms is an important mechanism leading to significant differences in the rhizosphere microbial community composition and structure, which may significantly impact the carbon and nitrogen cycles of the root-soil interface.  相似文献   
90.
Disposal of the pollutants arising from farming cattle and other livestock threatens the environment and public safety in diverse ways. Herein, we report on the synthesis of engineered biochars using cow dung as raw material, and investigating these biochars as antibacterial agents for water decontamination. By coating the biochars with N-halamine polymer and loading them with active chlorine (i.e., Cl+), we were able to regulate them on demand by tuning the polymer coating and bleaching conditions. The obtained N-halamine-modified biochars were found to be extremely potent against Escherichia coli and Staphylococcus aureus. We also investigated the possibility of using these N-halamine-modified biochars for bacterial decontamination in real-world applications. Our findings indicated that a homemade filter column packed with N-halamine-modified biochars removed pathogenic bacteria from mining sewage, dairy sewage, domestic sewage, and artificial seawater. This proposed strategy could indicate a new way for utilizing livestock pollutants to create on-demand decontaminants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号