首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   61篇
  国内免费   25篇
安全科学   143篇
环保管理   34篇
综合类   62篇
基础理论   113篇
污染及防治   5篇
评价与监测   3篇
社会与环境   10篇
灾害及防治   4篇
  2024年   2篇
  2023年   21篇
  2022年   25篇
  2021年   31篇
  2020年   26篇
  2019年   21篇
  2018年   10篇
  2017年   16篇
  2016年   16篇
  2015年   20篇
  2014年   14篇
  2013年   7篇
  2012年   7篇
  2011年   27篇
  2010年   18篇
  2009年   29篇
  2008年   20篇
  2007年   16篇
  2006年   13篇
  2005年   11篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1990年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有374条查询结果,搜索用时 312 毫秒
171.
为确定南昌市秋冬季降水中硝酸盐来源及贡献,于2016年9月1日至2017年2月28日对南昌地区雨水进行采集,分析了其化学组成及NO3-同位素组成并利用贝叶斯混合模型对NO3-四种潜在来源贡献进行计算.结果显示NO3-浓度范围为7.3~99.5μmol/L,平均值为36.1μmol/L;δ15N-NO3-变化范围为-6.0‰~+8.3‰,平均值为-0.8‰,两者均呈现冬季高秋季低的变化趋势.NO3-浓度季节性变化可能是受到降雨量等因素的影响,而δ15N-NO3-变化可能是冬季降水中机动车尾气排放偏高和秋季降水中煤燃烧来源偏高双重因素作用的结果.同位素及贝叶斯混合模型源解析结果表明,南昌市降水中NO3-主要来源于生物质燃烧(32.5%)、机动车尾气排放(30.8%)和煤燃烧(23.1%),三者贡献超过86%;而机动车尾气排放和生物质燃烧释放均超过30%,这可能与近年来机动车快速增加和秋冬季野外生物质大量燃烧有关.煤燃烧虽然也是重要来源,但相对生物质燃烧和机动车尾气排放较小,这可能与近年我国减排措施有关.  相似文献   
172.
Nitrate (NO3) has been the dominant ion of secondary inorganic aerosols (SIAs) in PM2.5 in North China. Tracking the formation mechanisms and sources of particulate nitrate are vital to mitigate air pollution. In this study, PM2.5 samples in winter (January 2020) and in summer (June 2020) were collected in Jiaozuo, China, and water-soluble ions and (δ15N, δ18O)-NO3 were analyzed. The results showed that the increase of NO3 concentrations was the most remarkable with increasing PM2.5 pollution level. δ18O-NO3 values for winter samples (82.7‰ to 103.9‰) were close to calculated δ18O-HNO3 (103‰ ± 0.8‰) values by N2O5 pathway, while δ18O-NO3 values (67.8‰ to 85.7‰) for summer samples were close to calculated δ18O-HNO3 values (61‰ ± 0.8‰) by OH oxidation pathway, suggesting that PM2.5 nitrate is largely from N2O5 pathway in winter, while is largely from OH pathway in summer. Averaged fractional contributions of PN2O5+H2O were 70% and 39% in winter and summer sampling periods, respectively, those of POH were 30% and 61%, respectively. Higher δ15N-NO3 values for winter samples (3.0‰ to 14.4‰) than those for summer samples (-3.7‰ to 8.6‰) might be due to more contributions from coal combustion in winter. Coal combustion (31% ± 9%, 25% ± 9% in winter and summer, respectively) and biomass burning (30% ± 12%, 36% ± 12% in winter and summer, respectively) were the main sources using Bayesian mixing model. These results provided clear evidence of particulate nitrate formation and sources under different PM2.5 levels, and aided in reducing atmospheric nitrate in urban environments.  相似文献   
173.
目的 分析环境因素对于自动步枪系统可靠性的影响。方法 首先介绍贝叶斯网络理论,然后将自动步枪系统可靠性建模划分为刚性抛壳机构和弹匣供弹机构两大模块。在此基础上,从设计制造、使用因素和环境因素3个方面进行故障树建模。将故障树转化为贝叶斯模型后,基于给出的底事件失效概率和引入的环境影响因子,计算考虑环境因素带来的共因失效效应时自动步枪系统的可靠度。结果 从系统层面来看,环境因素的影响会使系统的可靠度下降8.1%。结论 在进行自动步枪的系统可靠性分析时,考虑由环境因素带来的共因失效效应更为符合实际情况,不考虑共因失效效应时,往往会高估子系统的可靠度。  相似文献   
174.
Urban sprawl and the rising popularity of water-sensitive urban design of urban landscapes has led to a global surge in the number of wetlands constructed to collect and treat stormwater runoff in cities. However, contaminants, such as heavy metals and pesticides, in stormwater adversely affect the survival, growth, and reproduction of animals inhabiting these wetlands. A key question is whether wildlife can identify and avoid highly polluted wetlands. We investigated whether pond-breeding frogs are attempting to breed in wetlands that affect the fitness of their offspring across 67 urban wetlands in Melbourne, Australia. Frog species richness and the concentration of contaminants (heavy metals and pesticides) were not significantly related, even in the most polluted wetlands. The proportion of fringing vegetation at a wetland had the greatest positive influence on the number of frog species present and the probability of occurrence of individual species, indicating that frogs inhabited wetlands with abundant vegetation, regardless of their pollution status. These wetlands contained contaminant levels similar to urban wetlands around the world at levels that reduce larval amphibian survival. These results are, thus, likely generalizable to other areas, suggesting that urban managers could inadvertently be creating ecological traps in countless cities. Wetlands are important tools for the management of urban stormwater runoff, but their construction should not facilitate declines in wetland-dependent urban wildlife.  相似文献   
175.
Renewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity. We used a large, standardized data set of records of bat carcasses from 594 turbines in southern Ontario, Canada, and corrected these data to account for surveyor efficiency and scavenger removal. We used Bayesian hierarchical models to estimate temporal trends in aerial abundance of bats and to explore the effect of spatial factors, including landscape features associated with bat habitat (e.g., wetlands, croplands, and forested lands), on the number of mortalities for each species. The models showed a rapid decline in the abundance of 4 species in our study area; declines in capture of carcasses over 7 years ranged from 65% (big brown bat [Eptesicus fuscus]) to 91% (silver-haired bat [Lasionycteris noctivagans]). Estimated declines were independent of the effects of mitigation (increasing wind speed at which turbines begin to generate electricity from 3.5 to 5.5 m/s), which significantly reduced but did not eliminate bat mortality. Late-summer mortality of hoary (Lasiurus cinereus), eastern red (Lasiurus borealis), and silver-haired bats was predicted by woodlot cover, and mortality of big brown bats decreased with increasing elevation. These landscape predictors of bat mortality can inform the siting of future wind energy operations. Our most important result is the apparent decline in abundance of four common species of bat in the airspace, which requires further investigation.  相似文献   
176.
We developed a method to estimate population abundance from simultaneous counts of unmarked individuals over multiple sites. We considered that at each sampling occasion, individuals in a population could be detected at 1 of the survey sites or remain undetected and used either multinomial or binomial simultaneous-count models to estimate abundance, the latter being equivalent to an N-mixture model with one site. We tested model performance with simulations over a range of detection probabilities, population sizes, growth rates, number of years, sampling occasions, and sites. We then applied our method to 3 critically endangered vulture species in Cambodia to demonstrate the real-world applicability of the model and to provide the first abundance estimates for these species in Cambodia. Our new approach works best when existing methods are expected to perform poorly (i.e., few sites and large variation in abundance among sites) and if individuals may move among sites between sampling occasions. The approach performed better when there were >8 sampling occasions and net probability of detection was high (>0.5). We believe our approach will be useful in particular for simultaneous surveys at aggregation sites, such as roosts. The method complements existing approaches for estimating abundance of unmarked individuals and is the first method designed specifically for simultaneous counts.  相似文献   
177.
Conservation of species at risk of extinction is complex and multifaceted. However, mitigation strategies are typically narrow in scope, an artifact of conservation research that is often limited to a single species or stressor. Knowledge of an entire community of strongly interacting species would greatly enhance the comprehensiveness and effectiveness of conservation decisions. We investigated how camera trapping and spatial count models, an extension of spatial-recapture models for unmarked populations, can accomplish this through a case study of threatened boreal woodland caribou (Rangifer tarandus caribou). Population declines in caribou are precipitous and well documented, but recovery strategies focus heavily on control of wolves (Canis lupus) and pay less attention to other known predators and apparent competitors. Obtaining necessary data on multispecies densities has been difficult. We used spatial count models to concurrently estimate densities of caribou, their predators (wolf, black bear [Ursus americanus], and coyote [Canis latrans]), and alternative prey (moose [Alces alces] and white-tailed deer [Odocoileus virginianus]) from a camera-trap array in a highly disturbed landscape within northern Alberta's Oil Sands Region. Median densities were 0.22 caribous (95% Bayesian credible interval [BCI] = 0.08–0.65), 0.77 wolves (95% BCI = 0.26–2.67), 2.39 moose (95% BCI = 0.56–7.00), 2.64 coyotes (95% BCI = 0.45–6.68), and 3.63 black bears (95% BCI = 1.25–8.52) per 100 km2. (The white-tailed deer model did not converge.) Although wolf densities were higher than densities recommended for caribou conservation, we suggest the markedly higher black bear and coyote densities may be of greater concern, especially if government wolf control further releases these species. Caribou conservation with a singular focus on wolf control may leave caribou vulnerable to other predators. We recommend a broader focus on the interacting species within a community when conserving species.  相似文献   
178.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   
179.
Growing resource demands by humans, invasive species, natural hazards, and a changing climate have created broad‐scale impacts and the need for broader‐extent conservation activities that span ownerships and even political borders. Implementing regional‐scale conservation brings great challenges, and learning how to overcome these challenges is essential for maintaining biodiversity (i.e., richness and evenness of biological communities) and ecosystem functions and services across scales and borders in the face of system change. We administered an online survey to examine factors potentially driving perspectives of protected‐area (PA) managers regarding coordination with neighboring PAs and other stakeholders (i.e., stakeholder coordination) for conserving biodiversity and ecosystem services during the next decade within diverse regions across Europe. Although >70% (n = 58) of responding PA managers indicated that climate change and invasive species are relevant for their PAs, they gave <50% probability that these threats could be mitigated through stakeholder coordination. They thought there was a >60% probability (n = 85) that stakeholder coordination would take place with the aim to improve conservation outcomes. Consistent with the foundation on which many European PAs were established, managers viewed maintaining or enhancing biodiversity as the most important (>70%; n = 61) expected benefit. Other benefits included maintaining or enhancing human resources and environmental education (range of Bayesian credibility intervals [CIs] 57–93%). They thought the main barriers to stakeholder coordination were the lack of human and economic resources (CI 59–67% chance of hindering; n = 64) followed by communication and interstakeholder differences in political structures and laws (CI 51–64% probability of hindering). European policies and strategies that address these hindering factors could be particularly effective means of enabling implementation of green infrastructure networks in which PAs are the nodes.  相似文献   
180.
In this study we combined an extensive database of observed wildfires with high-resolution meteorological data to build a novel spatially and temporally varying survival model to analyze fire regimes in the Mediterranean ecosystem in the Cape Floristic Region (CFR) of South Africa during the period 1980-2000. The model revealed an important influence of seasonally anomalous weather on fire probability, with increased probability of fire in seasons that are warmer and drier than average. In addition to these local-scale influences, the Antarctic Ocean Oscillation (AAO) was identified as an important large-scale influence or teleconnection to global circulation patterns. Fire probability increased in seasons during positive AAO phases, when the subtropical jet moves northward and low level moisture transport decreases. These results confirm that fire occurrence in the CFR is strongly affected by climatic variability at both local and global scales, and thus likely to respond sensitively to future climate change. Comparison of the modelled fire probability between two periods (1951-1975 and 1976-2000) revealed a 4-year decrease in an average fire return time. If, as currently forecasted, climate change in the region continues to produce higher temperatures, more frequent heat waves, and/or lower rainfall, our model thus indicates that fire frequency is likely to increase substantially. The regional implications of shorter fire return times include shifting community structure and composition, favoring species that tolerate more frequent fires.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号