首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1273篇
  免费   339篇
  国内免费   327篇
安全科学   103篇
废物处理   27篇
环保管理   81篇
综合类   651篇
基础理论   819篇
污染及防治   163篇
评价与监测   64篇
社会与环境   12篇
灾害及防治   19篇
  2024年   1篇
  2023年   15篇
  2022年   29篇
  2021年   30篇
  2020年   28篇
  2019年   36篇
  2018年   112篇
  2017年   86篇
  2016年   96篇
  2015年   103篇
  2014年   127篇
  2013年   158篇
  2012年   130篇
  2011年   136篇
  2010年   107篇
  2009年   88篇
  2008年   73篇
  2007年   63篇
  2006年   50篇
  2005年   47篇
  2004年   47篇
  2003年   43篇
  2002年   32篇
  2001年   33篇
  2000年   61篇
  1999年   27篇
  1998年   20篇
  1997年   19篇
  1996年   21篇
  1995年   18篇
  1994年   16篇
  1993年   16篇
  1992年   19篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有1939条查询结果,搜索用时 928 毫秒
461.
United States and Canadian governments have responded to legal requirements to reduce human‐induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause‐specific mortalities with time. We compared the number of human‐caused mortalities with U.S. federally established levels of potential biological removal (i.e., species‐specific sustainable human‐caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel‐strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel‐strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population‐range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife‐management decisions. The results of these analyses can provide managers with direction for modifying regulated measures and can be applied globally to mortality‐driven conservation issues. Evaluación del Manejo para Mitigar Efectos Antropogénicos sobre Ballenas Mayores  相似文献   
462.
This paper describes how organic compounds and nitrogen compounds induce the formation of hydrogen cyanide during the distillation process. Hydrogen cyanide formation was confirmed by X‐ray diffraction. The formation scheme for hydrogen cyanide from organic compounds is proposed.  相似文献   
463.
Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case‐by‐case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by increasing transparency and consistency. Evaluando Reglas de Decisión para Categorizar el Riesgo de Extinción de Especies con el Fin de Desarrollar de Criterios Cuantitativos de Alistamiento en el Acta de Especies en Peligro de los EE. UU.  相似文献   
464.
Abstract: Informally gathered species lists are a potential source of data for conservation biology, but most remain unused because of questions of reliability and statistical issues. We applied two alternative analytical methods (contingency tests and occupancy modeling) to a 35‐year data set (1973–2007) to test hypotheses about local bird extinction. We compiled data from bird lists collected by expert amateurs and professional scientists in a 2‐km2 fragment of lowland tropical forest in coastal Ecuador. We tested the effects of the following on local extinction: trophic level, sociality, foraging specialization, light tolerance, geographical range area, and biogeographic source. First we assessed extinction on the basis of the number of years in which a species was not detected on the site and used contingency tests with each factor to compare the frequency of expected and observed extinction events among different species categories. Then we defined four multiyear periods that reflected different stages of deforestation and isolation of the study site and used occupancy modeling to test extinction hypotheses singly and in combination. Both types of analyses supported the biogeographic source hypothesis and the species‐range hypothesis as causes of extinction; however, occupancy modeling indicated the model incorporating all factors except foraging specialization best fit the data.  相似文献   
465.
Conservation operates within complex systems with incomplete knowledge of the system and the interventions utilized. This frequently results in the inability to find generally applicable methods to alleviate threats to Earth's vanishing wildlife. One approach used in medicine and the social sciences has been to develop a deeper understanding of positive outliers. Where such outliers share similar characteristics, they may be considered exceptional responders. We devised a 4‐step framework for identifying exceptional responders in conservation: identification of the study system, identification of the response structure, identification of the threshold for exceptionalism, and identification of commonalities among outliers. Evaluation of exceptional responders provides additional information that is often ignored in randomized controlled trials and before–after control‐intervention experiments. Interrogating the contextual factors that contribute to an exceptional outcome allow exceptional responders to become valuable pieces of information leading to unexpected discoveries and novel hypotheses.  相似文献   
466.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   
467.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   
468.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   
469.
ABSTRACT: Twenty storm events were used to select design values of the HEC1 loss parameters STRTL and CNSTL in order to route the probable maximum flood, PMF, through the Englewood watershed, Ohio. The parameter STRTL represents the initial volume of water lost due to interception and incomplete saturation of the soil prior to the storm. The parameter CNSTL represents a continuous loss rate and depends only on the watershed. When optimized from each storm event, STRTL varied between 0.0 and 3.4 inches with an average of 1.0 inch; CNSTL varied between 0.02 and 0.26 inch/hour, and it followed a normal probability distribution with a mean of about 0.1 inch/hour. The absence of correlation between optimum CNSTL values and each of total rainfall, total loss, and runoff duration supported the selection of the mean CNSTL as a design value. PMF routing through the Englewood watershed revealed that the PMF at the outlet is not sensitive to STRTL, but highly affected by CNSTL variations. The insensitivity to STRTL was due to the presence of a dam at the outlet of the watershed that caused the buildup of water in the watershed, thereby masking the storage effect of STRTL. The peak PMF increased by about 27 percent when the design CNSTL was decreased to 0.05 inch! hour, and decreased by about 18 percent when the design CNSTL was increased to 0.15 inch/hour.  相似文献   
470.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号