首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1273篇
  免费   339篇
  国内免费   327篇
安全科学   103篇
废物处理   27篇
环保管理   81篇
综合类   651篇
基础理论   819篇
污染及防治   163篇
评价与监测   64篇
社会与环境   12篇
灾害及防治   19篇
  2024年   1篇
  2023年   15篇
  2022年   29篇
  2021年   30篇
  2020年   28篇
  2019年   36篇
  2018年   112篇
  2017年   86篇
  2016年   96篇
  2015年   103篇
  2014年   127篇
  2013年   158篇
  2012年   130篇
  2011年   136篇
  2010年   107篇
  2009年   88篇
  2008年   73篇
  2007年   63篇
  2006年   50篇
  2005年   47篇
  2004年   47篇
  2003年   43篇
  2002年   32篇
  2001年   33篇
  2000年   61篇
  1999年   27篇
  1998年   20篇
  1997年   19篇
  1996年   21篇
  1995年   18篇
  1994年   16篇
  1993年   16篇
  1992年   19篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有1939条查询结果,搜索用时 218 毫秒
591.
Identifying which nonindigenous species will become invasive and forecasting the damage they will cause is difficult and presents a significant problem for natural resource management. Often, the data or resources necessary for ecological risk assessment are incomplete or absent, leaving environmental decision makers ill equipped to effectively manage valuable natural resources. Structured expert judgment (SEJ) is a mathematical and performance‐based method of eliciting, weighting, and aggregating expert judgments. In contrast to other methods of eliciting and aggregating expert judgments (where, for example, equal weights may be assigned to experts), SEJ weights each expert on the basis of his or her statistical accuracy and informativeness through performance measurement on a set of calibration variables. We used SEJ to forecast impacts of nonindigenous Asian carp (Hypophthalmichthys spp.) in Lake Erie, where it is believed not to be established. Experts quantified Asian carp biomass, production, and consumption and their impact on 4 fish species if Asian carp were to become established. According to experts, in Lake Erie Asian carp have the potential to achieve biomass levels that are similar to the sum of biomasses for several fishes that are harvested commercially or recreationally. However, the impact of Asian carp on the biomass of these fishes was estimated by experts to be small, relative to long term average biomasses, with little uncertainty. Impacts of Asian carp in tributaries and on recreational activities, water quality, or other species were not addressed. SEJ can be used to quantify key uncertainties of invasion biology and also provide a decision‐support tool when the necessary information for natural resource management and policy is not available. El Uso de Juicio Experto Estructurado para Predecir Invasiones de Carpas Asiáticas en el Lago Erie  相似文献   
592.
Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium‐ to large‐bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old‐growth forest. Hunting was a more serious long‐term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species‐specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems. Correlación y Persistencia de los Impactos de la Caza y la Tala sobre los Mamíferos de los Bosques Tropicales  相似文献   
593.
Systematic conservation planning optimizes trade‐offs between biodiversity conservation and human activities by accounting for socioeconomic costs while aiming to achieve prescribed conservation objectives. However, the most cost‐efficient conservation plan can be very dissimilar to any other plan achieving the set of conservation objectives. This is problematic under conditions of implementation uncertainty (e.g., if all or part of the plan becomes unattainable). We determined through simulations of parallel implementation of conservation plans and habitat loss the conditions under which optimal plans have limited chances of implementation and where implementation attempts would fail to meet objectives. We then devised a new, flexible method for identifying conservation priorities and scheduling conservation actions. This method entails generating a number of alternative plans, calculating the similarity in site composition among all plans, and selecting the plan with the highest density of neighboring plans in similarity space. We compared our method with the classic method that maximizes cost efficiency with synthetic and real data sets. When implementation was uncertain—a common reality—our method provided higher likelihood of achieving conservation targets. We found that χ, a measure of the shortfall in objectives achieved by a conservation plan if the plan could not be implemented entirely, was the main factor determining the relative performance of a flexibility enhanced approach to conservation prioritization. Our findings should help planning authorities prioritize conservation efforts in the face of uncertainty about future condition and availability of sites.  相似文献   
594.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   
595.
Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional‐focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low‐elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.  相似文献   
596.
A global conservation goal is to understand the pathways through which invasive species are introduced into new regions. Botanic gardens are a pathway for the introduction of invasive non‐native plants, but a quantitative assessment of the risks they pose has not been performed. I analyzed data on the living collections of over 3000 botanic gardens worldwide to quantify the temporal trend in the representation of non‐native species; the relative composition of threatened, ornamental, or invasive non‐native plant species; and the frequency with which botanic gardens implement procedures to address invasive species. While almost all of the world's worst invasive non‐native plants occurred in one or more living collections (99%), less than one‐quarter of red‐listed threatened species were cultivated (23%). Even when cultivated, individual threatened species occurred in few living collections (7.3), while non‐native species were on average grown in 6 times as many botanic gardens (44.3). As a result, a botanic garden could, on average, cultivate four times as many invasive non‐native species (20) as red‐listed threatened species (5). Although the risk posed by a single living collection is small, the probability of invasion increases with the number of botanic gardens within a region. Thus, while both the size of living collections and the proportion of non‐native species cultivated have declined during the 20th century, this reduction in risk is offset by the 10‐fold increase in the number of botanic gardens established worldwide. Unfortunately, botanic gardens rarely implement regional codes of conduct to prevent plant invasions, few have an invasive species policy, and there is limited monitoring of garden escapes. This lack of preparedness is of particular concern given the rapid increase in living collections worldwide since 1950, particularly in South America and Asia, and highlights past patterns of introduction will be a poor guide to determining future invasion risks.  相似文献   
597.
Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business‐as‐usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision‐making analysis, we ranked 7 major electricity‐generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit‐to‐cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new‐generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence‐based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade‐offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy‐related biodiversity impacts because of preconceived notions and ideals.  相似文献   
598.
Most conservation planning to date has focused on protecting today's biodiversity with the assumption that it will be tomorrow's biodiversity. However, modern climate change has already resulted in distributional shifts of some species and is projected to result in many more shifts in the coming decades. As species redistribute and biotic communities reorganize, conservation plans based on current patterns of biodiversity may fail to adequately protect species in the future. One approach for addressing this issue is to focus on conserving a range of abiotic conditions in the conservation‐planning process. By doing so, it may be possible to conserve an abiotically diverse “stage” upon which evolution will play out and support many actors (biodiversity). We reviewed the fundamental underpinnings of the concept of conserving the abiotic stage, starting with the early observations of von Humboldt, who mapped the concordance of abiotic conditions and vegetation, and progressing to the concept of the ecological niche. We discuss challenges posed by issues of spatial and temporal scale, the role of biotic drivers of species distributions, and latitudinal and topographic variation in relationships between climate and landform. For example, abiotic conditions are not static, but change through time—albeit at different and often relatively slow rates. In some places, biotic interactions play a substantial role in structuring patterns of biodiversity, meaning that patterns of biodiversity may be less tightly linked to the abiotic stage. Furthermore, abiotic drivers of biodiversity can change with latitude and topographic position, meaning that the abiotic stage may need to be defined differently in different places. We conclude that protecting a diversity of abiotic conditions will likely best conserve biodiversity into the future in places where abiotic drivers of species distributions are strong relative to biotic drivers, where the diversity of abiotic settings will be conserved through time, and where connectivity allows for movement among areas providing different abiotic conditions.  相似文献   
599.
Decisions need to be made about which biodiversity management actions are undertaken to mitigate threats and about where these actions are implemented. However, management actions can interact; that is, the cost, benefit, and feasibility of one action can change when another action is undertaken. There is little guidance on how to explicitly and efficiently prioritize management for multiple threats, including deciding where to act. Integrated management could focus on one management action to abate a dominant threat or on a strategy comprising multiple actions to abate multiple threats. Furthermore management could be undertaken at sites that are in close proximity to reduce costs. We used cost‐effectiveness analysis to prioritize investments in fire management, controlling invasive predators, and reducing grazing pressure in a bio‐diverse region of southeastern Queensland, Australia. We compared outcomes of 5 management approaches based on different assumptions about interactions and quantified how investment needed, benefits expected, and the locations prioritized for implementation differed when interactions were taken into account. Managing for interactions altered decisions about where to invest and in which actions to invest and had the potential to deliver increased investment efficiency. Differences in high priority locations and actions were greatest between the approaches when we made different assumptions about how management actions deliver benefits through threat abatement: either all threats must be managed to conserve species or only one management action may be required. Threatened species management that does not consider interactions between actions may result in misplaced investments or misguided expectations of the effort required to mitigate threats to species.  相似文献   
600.
There are concerns that Reduced Emissions from Deforestation and forest Degradation (REDD+) may fail to deliver potential biodiversity cobenefits if it is focused on high carbon areas. We explored the spatial overlaps between carbon stocks, biodiversity, projected deforestation threats, and the location of REDD+ projects in Indonesia, a tropical country at the forefront of REDD+ development. For biodiversity, we assembled data on the distribution of terrestrial vertebrates (ranges of amphibians, mammals, birds, reptiles) and plants (species distribution models for 8 families). We then investigated congruence between different measures of biodiversity richness and carbon stocks at the national and subnational scales. Finally, we mapped active REDD+ projects and investigated the carbon density and potential biodiversity richness and modeled deforestation pressures within these forests relative to protected areas and unprotected forests. There was little internal overlap among the different hotspots (richest 10% of cells) of species richness. There was also no consistent spatial congruence between carbon stocks and the biodiversity measures: a weak negative correlation at the national scale masked highly variable and nonlinear relationships island by island. Current REDD+ projects were preferentially located in areas with higher total species richness and threatened species richness but lower carbon densities than protected areas and unprotected forests. Although a quarter of the total area of these REDD+ projects is under relatively high deforestation pressure, the majority of the REDD+ area is not. In Indonesia at least, first‐generation REDD+ projects are located where they are likely to deliver biodiversity benefits. However, if REDD+ is to deliver additional gains for climate and biodiversity, projects will need to focus on forests with the highest threat to deforestation, which will have cost implications for future REDD+ implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号