首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   25篇
  国内免费   113篇
安全科学   38篇
废物处理   32篇
环保管理   14篇
综合类   164篇
基础理论   35篇
污染及防治   79篇
评价与监测   6篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   12篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   10篇
  2015年   21篇
  2014年   16篇
  2013年   30篇
  2012年   24篇
  2011年   30篇
  2010年   10篇
  2009年   13篇
  2008年   12篇
  2007年   25篇
  2006年   23篇
  2005年   14篇
  2004年   11篇
  2003年   9篇
  2002年   11篇
  2001年   6篇
  2000年   10篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有368条查询结果,搜索用时 312 毫秒
51.
通过对废水pH值、H2O2用量、催化剂用量、反应时间、反应温度等工艺条件的考察,确定了H2O2催化氧化处理酸性大红染料废水的最佳工艺条件pH 4、H2O2用量6 mL/L、催化剂用量3 g/L、反应时间100 min、反应温度70℃.在该条件下,COD和色度的去除率分别为76.7%和99.4%;通过反应前后的紫外-可见光光谱分析表明,H2O2催化氧化处理酸性大红GR染料废水有比较好的效果,为该工艺处理酸性大红GR染料废水提供了科学依据.  相似文献   
52.
• Nano CaO2 is evaluated as a remediation agent for 2,4-DCP contaminated groundwater. • 2,4-DCP degradation mechanism by different Fe2+ concentration was proposed. • 2,4-DCP was not degraded in the system for solution pH>10. • The 2,4-DCP degradation area is inconsistent with the nano CaO2 distribution area. This study evaluates the applicability of nano-sized calcium peroxide (CaO2) as a source of H2O2 to remediate 2,4-dichlorophenol (2,4-DCP) contaminated groundwater via the advanced oxidation process (AOP). First, the effect and mechanism of 2,4-DCP degradation by CaO2 at different Fe concentrations were studied (Fenton reaction). We found that at high Fe concentrations, 2,4-DCP almost completely degrades via primarily the oxidation of •OH within 5 h. At low Fe concentrations, the degradation rate of 2,4-DCP decreased rapidly. The main mechanism was the combined action of •OH and O2•−. Without Fe, the 2,4-DCP degradation reached 13.6% in 213 h, primarily via the heterogeneous reaction on the surface of CaO2. Besides, 2,4-DCP degradation was significantly affected by solution pH. When the solution pH was>10, the degradation was almost completely inhibited. Thus, we adopted a two-dimensional water tank experiment to study the remediation efficiency CaO2 on the water sample. We noticed that the degradation took place mainly in regions of pH<10 (i.e., CaO2 distribution area), both upstream and downstream of the tank. After 28 days of treatment, the average 2,4-DCP degradation level was ≈36.5%. Given the inadequacy of the results, we recommend that groundwater remediation using nano CaO2: (1) a buffer solution should be added to retard the rapid increase in pH, and (2) the nano CaO2 should be injected copiously in batches to reduce CaO2 deposition.  相似文献   
53.
• Gas diffusion electrode (GDE) is a suitable setup for practical water treatment. • Electrochemical H2O2 production is an economically competitive technology. • High current efficiency of H2O2 production was obtained with GDE at 5–400 mA/cm2. • GDE maintained high stability for H2O2 production for ~1000 h. • Electro-generation of H2O2 enhances ibuprofen removal in an E-peroxone process. This study evaluated the feasibility of electrochemical hydrogen peroxide (H2O2) production with gas diffusion electrode (GDE) for decentralized water treatment. Carbon black-polytetrafluoroethylene GDEs were prepared and tested in a continuous flow electrochemical cell for H2O2 production from oxygen reduction. Results showed that because of the effective oxygen transfer in GDEs, the electrode maintained high apparent current efficiencies (ACEs,>80%) for H2O2 production over a wide current density range of 5–400 mA/cm2, and H2O2 production rates as high as ~202 mg/h/cm2 could be obtained. Long-term stability test showed that the GDE maintained high ACEs (>85%) and low energy consumption (<10 kWh/kg H2O2) for H2O2 production for 42 d (~1000 h). However, the ACEs then decreased to ~70% in the following 4 days because water flooding of GDE pores considerably impeded oxygen transport at the late stage of the trial. Based on an electrode lifetime of 46 days, the overall cost for H2O2 production was estimated to be ~0.88 $/kg H2O2, including an electricity cost of 0.61 $/kg and an electrode capital cost of 0.27 $/kg. With a 9 cm2 GDE and 40 mA/cm2 current density, ~2–4 mg/L of H2O2 could be produced on site for the electro-peroxone treatment of a 1.2 m3/d groundwater flow, which considerably enhanced ibuprofen abatement compared with ozonation alone (~43%–59% vs. 7%). These findings suggest that electrochemical H2O2 production with GDEs holds great promise for the development of compact treatment technologies for decentralized water treatment at a household and community level.  相似文献   
54.
Microorganisms are ubiquitous in natural environments and in water supply infrastructure including groundwater wells. Sessile-state microorganisms may build up on well surfaces as biofilms and, if excessive, cause biofouling that reduces well productivity and water quality. Conditions can be improved using biocides and other traditional well rehabilitation measures; however, biofilm regrowth is inevitable given the continuous introduction of microorganisms from the surrounding environment. Alternative and less invasive well maintenance approaches are desirable for reducing biofilm densities while also minimizing harmful disinfection-by-products. The primary objective of this research was to evaluate effectiveness of alternative treatments for inactivating microorganisms comprising biofilms. A novel approach was designed for in situ growth of biofilms on steel coupons suspended from ‘chandeliers’. After more than 100 days of in situ growth, biofilms were harvested, sampled, and baseline biofilm densities quantified through cultivation. Ultraviolet-C (UV-C) and oxidative treatments including hydrogen peroxide (H2O2), ozone (O3) and mixed oxidants were then applied to the biofilms in laboratory-scale treatments. Microbial inactivation was assessed by comparing treated versus baseline biofilm densities. H2O2 was the most effective treatment, and decreased density below baseline by as much as 3.1 orders of magnitude. Mixed oxidants were effective for the well having a lower density biofilm, decreasing density below baseline by as much as 1.4 orders of magnitude. Disparity in the response to treatment was apparent in the wells despite their spatial proximity and common aquifer source, which suggests that microbiological communities are more heterogeneous than the natural media from which they originate.  相似文献   
55.
The effect of white African mineral dye Yombofita (YF) on the activities of alkaline phosphatase (ALP), acid phosphatase (ACP) and malondialdehyde (MDA) levels in the skin, liver, kidney and serum of albino rats was investigated. The chemical analysis of the dye was first carried out using solubility test, pH determination and X-ray fluorescence (XRF) elemental analysis. Six different concentrations (0.05, 0.15, 0.25, 0.5, 0.75 and 1.00%) of the dye were prepared using hydrogen peroxide (30 volume) as solvent. A total of 80 albino rats (Rattus norvegicus) were used for the study. The rats were divided into 8 groups of 10 each and were maintained on commercial feed for the period of the experiment i.e. 30 days. In group 1, the control group, the animals were applied distilled water on their heads, whereas in group 2 the vehicle i.e. hydrogen peroxide was applied. In groups 3 to 8 various concentrations of YF (white) dye ranging from 0.05, 0.15, 0.25, 0.5, 0.75 to 1.00% was applied respectively. At the end of the experiment, blood samples were collected and portions of the selected tissues were excised for the determination of ALP and ACP activities. The MDA level was also determined in the skin of experimental animals. The results revealed a significant decrease (p?p?相似文献   
56.
在自制的圆柱型双层玻璃反应器中,以木素类模型物紫丁香醇(SL)为目标化合物,考察Fenton试剂对紫丁香醇的降解效果,研究溶液的pH值、H2O2的用量、Fe2+的用量、紫丁香醇溶液初始浓度、反应时间、紫外光照射等因素对紫丁香醇降解的影响。实验结果表明:在室温条件下,当体系pH值为3.0时,加入两倍理论用量的H2O2,Fe2+与H2 O2的物质的量之比为1︰50,反应60 min后,50 mg/L的紫丁香醇的去除率可达87.5%;当体系中引入紫外光后,Fenton试剂的氧化性明显增加,反应速度显著加快,30 min后紫丁香醇可完全矿化。  相似文献   
57.
以环己烷空气氧化装置产生的酸性洗涤废水(BI有机废水)为原料,通过分析不同条件下分解氧化产物组成,考察了分解反应催化剂种类、用量及分解反应时间对产物二元酸的分布及己二酸表观收率的影响。试验结果表明,在钴盐存在下使BI有机废水浓缩液回流反应120min以上,再经硝酸氧化可使由BI有机废水制取己二酸的表观收率达到BI有机废水总质量的10%~12%。  相似文献   
58.
过氧化氢热爆炸研究进展   总被引:2,自引:0,他引:2  
过氧化氢作为绿色环保的氧化剂,广泛应用于工业的各个领域,同时也因其热分解爆炸危险性导致了一系列严重的火灾爆炸事故。过氧化氢在高温或与一些不兼容化学物质作用下,将会激发其热危险性,进而引发热失控反应,最终导致爆炸事故的发生。结合近年来国内发生的过氧化氢热爆炸事故,简要概述了其热爆炸事故历程,并从理论研究和实验研究两个方面综述了过氧化氢热爆炸的研究进展。理论研究方面,主要介绍了化学反应失控模型和基于热动力学的研究方法,尤其对基于热失控模型的热风险评估进行了详细的阐述。实验研究方面,分析了高温条件下与杂质催化作用下过氧化氢的热危险性,包括无机杂质和有机杂质。最后就过氧化氢热爆炸的研究提出了进一步的研究方向。  相似文献   
59.
The thermal stability of organic peroxides (cumene hydroperoxide 80 wt% and dicumyl peroxide) was studied by means of calorimetric measurement (DSC, TA Q1000) in an isotherm mode and a dynamic mode. Analysis of power profiles released in the isothermal mode was combined with the analysis of the decomposed compounds by a gas chromatograph/mass spectrometer (GC/MS) to determine the reaction mechanisms corresponding to each of the two reactions. In this work, a methodology for estimating kinetic parameters was based on the comparison of the power profile (dynamic mode) given by the model to that obtained experimentally by changing the parameters values. Parameter estimation is achieved using the mixed estimation method where a genetic algorithm is combined with a locally convergent method.  相似文献   
60.
在模拟太阳光下研究了多种腐殖质及其模型化合物的过氧化氢(H2O2)生成动力学,并对其生成机制进行了探讨.结果表明不同来源或不同形式的腐殖质在模拟太阳光照射下均能产生H2O2.不同腐殖质生成H2O2速率差异不大,范围为6.379~15.784nmol/(L·min),腐殖酸生成H2O2速率略快于富里酸.对于腐殖质模型化合物,邻苯二酚、间苯二酚、对苯二酚、苯醌、邻茴香胺、对茴香胺、水杨酸和2,6-二甲氧基-1,4-苯醌等8种模型化合物没有产生明显的H2O2,而藜芦醇、对氨基苯甲酸、3,5-二羟基苯甲酸(DHBA)、2,5-二羟基-1,4-苯醌、苯酚、苯甲酸和苯胺等7种化合物均可检测到H2O2产生.但其产生H2O2的速率差异较大,相差1~2个数量级,生成H2O2速率最快的化合物为2,5-二羟基-1,4-苯醌和DHBA,较慢的为苯酚、苯甲酸和对氨基苯甲酸.基于腐殖质生成H2O2机制,推测典型模型化合物DHBA的H2O2生成机制可能为光照条件下该化合物跃迁为单重激发态,该激发态发生分子内电子转移,生成还原性自由基中间体,该中间体和O2反应,生成了超氧负离子(O2·-),随后与水中H+反应生成了H2O2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号