首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10008篇
  免费   702篇
  国内免费   652篇
安全科学   2702篇
废物处理   239篇
环保管理   3127篇
综合类   2835篇
基础理论   966篇
环境理论   10篇
污染及防治   389篇
评价与监测   437篇
社会与环境   356篇
灾害及防治   301篇
  2024年   17篇
  2023年   114篇
  2022年   152篇
  2021年   265篇
  2020年   337篇
  2019年   250篇
  2018年   199篇
  2017年   264篇
  2016年   385篇
  2015年   349篇
  2014年   430篇
  2013年   585篇
  2012年   582篇
  2011年   675篇
  2010年   463篇
  2009年   577篇
  2008年   435篇
  2007年   566篇
  2006年   566篇
  2005年   472篇
  2004年   528篇
  2003年   412篇
  2002年   350篇
  2001年   342篇
  2000年   346篇
  1999年   275篇
  1998年   205篇
  1997年   191篇
  1996年   154篇
  1995年   159篇
  1994年   63篇
  1993年   78篇
  1992年   75篇
  1991年   62篇
  1990年   37篇
  1989年   28篇
  1988年   36篇
  1987年   34篇
  1986年   27篇
  1985年   24篇
  1984年   27篇
  1983年   17篇
  1982年   22篇
  1981年   19篇
  1980年   24篇
  1979年   33篇
  1978年   21篇
  1973年   14篇
  1972年   16篇
  1971年   15篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
321.
A multi-objective optimisation approach to water management   总被引:3,自引:0,他引:3  
The management of river basins is complex especially when decisions about environmental flows are considered in addition to those concerning urban and agricultural water demand. The solution to these complex decision problems requires the use of mathematical techniques that are formulated to take into account conflicting objectives. Many optimization models exist for water management systems but there is a knowledge gap in linking bio-economic objectives with the optimum use of all water resources under conflicting demands. The efficient operation and management of a network of nodes comprising storages, canals, river reaches and irrigation districts under environmental flow constraints is challenging. Minimization of risks associated with agricultural production requires accounting for uncertainty involved with climate, environmental policy and markets. Markets and economic criteria determine what crops farmers would like to grow with subsequent effect on water resources and the environment. Due to conflicts between multiple goal requirements and the competing water demands of different sectors, a multi-criteria decision-making (MCDM) framework was developed to analyze production targets under physical, biological, economic and environmental constraints. This approach is described by analyzing the conflicts that may arise between profitability, variable costs of production and pumping of groundwater for a hypothetical irrigation area.  相似文献   
322.
One of the most important endemic tree species of Chile and at the same time one of the most endangered ones is Araucaria araucana (Mol.) C. Koch, the monkey‐puzzle tree. It grows in the Andes Mountains, homeland of the indigenous Mapuche Pewenche people who depend on this tree. This paper is based on field research that investigated the ecological knowledge, uses and management of the Araucaria araucana forest by indigenous Mapuche Pewenche people based on the socio‐cultural, spiritual and ecological relationships they have with the Araucaria forest, to find out how indigenous people and their knowledge could contribute to sustainable Araucaria forest management. A Mapuche Pewenche community located in the IX region of Chile contributed to this study. Based on the analyses this paper illustrates the nature of indigenous ecological knowledge of Araucaria araucana on the one hand, and its utility in native forest management on the other. The research shows that the Mapuche Pewenche hold ecological knowledge and conduct practices to manage their Araucaria forest in a balanced way. They conserve and use forest biodiversity at one and the same time. This paper provides recommendations for sustainable Araucaria forest management and conservation strategies ex‐situ and in‐situ incorporating indigenous knowledge and scientific knowledge and for promoting a collaborative natural resources management.  相似文献   
323.
ABSTRACT: Water scarcity in the Sevier River Basin in south‐central Utah has led water managers to seek advanced techniques for identifying optimal forecasting and management measures. To more efficiently use the limited quantity of water in the basin, better methods for control and forecasting are imperative. Basin scale management requires advanced forecasts of the availability of water. Information about long term water availability is important for decision making in terms of how much land to plant and what crops to grow; advanced daily predictions of streamflows and hydraulic characteristics of irrigation canals are of importance for managing water delivery and reservoir releases; and hourly forecasts of flows in tributary streams to account for diurnal fluctuations are vital to more precisely meet the day‐to‐day expectations of downstream farmers. A priori streamflow information and exogenous climate data have been used to predict future streamflows and required reservoir releases at different timescales. Data on snow water equivalent, sea surface temperatures, temperature, total solar radiation, and precipitation are fused by applying artificial neural networks to enhance long term and real time basin scale water management information. This approach has not previously been used in water resources management at the basin‐scale and could be valuable to water users in semi‐arid areas to more efficiently utilize and manage scarce water resources.  相似文献   
324.
ABSTRACT: Water quality indicators of two agriculturally impacted karst areas in southeastern West Virginia were studied to determine the water quality effects of grazing agriculture and water quality trends following initiation of water quality improvement programs. Both areas are tributaries of the Greenbrier River and received funding for best management practices under the President's Initiative for Water Quality and then under the Environmental Quality Incentives Program (EQIP). After 11 years of study there was little evidence to suggest that water quality improved in one area. Three and a half years of study in the other area showed little evidence of consistent water quality improvement under EQIP. Lack of consistent water quality improvement at the catchment scale does not imply that the voluntary programs were failures. Increased livestock numbers as a result of successful changes in forage management practices may have overridden water quality improvements achieved through best management practices. Practices that target well defined contributing areas significantly impacting aquifer water quality might be one way to improve water quality at catchment scales in karst basins. For example, a significant decrease in fecal coliform concentrations was observed in subterranean drainage from one targeted sinkhole after dairy cattle were permanently excluded from the sinkhole.  相似文献   
325.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   
326.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   
327.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
328.
In Massachusetts, the Charles River Watershed Association conducts a regular water quality monitoring and public notification program in the Charles River Basin during the recreational season to inform users of the river's health. This program has relied on laboratory analyses of river samples for fecal coliform bacteria levels, however, results are not available until at least 24 hours after sampling. To avoid the need for laboratory analyses, ordinary least squares (OLS) and logistic regression models were developed to predict fecal coliform bacteria concentrations and the probabilities of exceeding the Massachusetts secondary contact recreation standard for bacteria based on meteorological conditions and streamflow. The OLS models resulted in adjusted R2s ranging from 50 to 60 percent. An uncertainty analysis reveals that of the total variability of fecal coliform bacteria concentrations, 45 percent is explained by the OLS regression model, 15 percent is explained by both measurement and space sampling error, and 40 percent is explained by time sampling error. Higher accuracy in future bacteria forecasting models would likely result from reductions in laboratory measurement errors and improved sampling designs.  相似文献   
329.
王艳霞  徐栋  刘克会 《安全》2019,40(6):33-37
近年来,因供热管道老化腐蚀、外部自然环境、施工活动等导致的事故时有发生,给居民的冬季供暖造成了严重的危害和影响。本文在分析供热管道自身安全特性的基础上,运用事故树等系统安全分析方法对供热管道隐患进行辨识分析,结合供热管道影响因素明确隐患辨识重点,并针对隐患排查内容及手段等提出对策建议,以支撑供热管道单位更系统、更科学的开展隐患排查治理工作,保障管线的安全运行。  相似文献   
330.
陈安  周丹 《安全》2019,40(7):16-23
本文为了增加对突发事件的科学认识,提升应急管理的能力水平,首先对突发事件和应急管理的内在机理进行剖析。通过分阶段、划层次地构建"4L-5S"机理分析模型,将二者划归为统一体系,以理清其逻辑内涵;然后,为顺应时代发展特征,满足应急管理的更高要求,实现应急管理工作从非常态协同应对转为常态化职能管理,对现代应急管理体制加以总体设计。从而,突发事件机理体系设计使得我国的突发事件机理研究逐渐过渡至具有阶段性和层次性,现代应急管理体制设计使得我国应急管理整合出具备现代思维理念的逻辑框架。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号