首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  国内免费   7篇
安全科学   4篇
环保管理   9篇
综合类   21篇
基础理论   22篇
污染及防治   6篇
评价与监测   2篇
灾害及防治   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   9篇
  2010年   1篇
  2009年   7篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1989年   2篇
  1978年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
51.
主要气象因素对可吸入颗粒物浓度影响规律探讨   总被引:6,自引:1,他引:5  
简要介绍了上海、南京、苏州和南通市区API污染指数逐月同步走向的一致性,得出环境空气质量保护目标确定条件下,影响大气污染物浓度高低的主要因素是大中尺度天气系统的气象因素以及春、夏、秋、冬和典型冬季寒潮前后,南通市区可吸入颗粒物与气象因素之间的相关变化关系.说明在政府加大力度控制大气污染物排放量并取得阶段性成果时,另一个影响可吸入颗粒物浓度高低变化的重要因素是气象因素.  相似文献   
52.
A popular method for the treatment of aquifers contaminated with chlorinated solvents is chemical oxidation based on the injection of potassium permanganate (KMnO4). Both the high density (1025 gL− 1) and reactivity of the treatment solution influence the fate of permanganate (MnO4) in the subsurface and affect the degree of contaminant treatment. The MIN3P multicomponent reactive transport code was enhanced to simulate permanganate-based remediation, to evaluate the pathways of MnO4 utilization, and to assess the role of density contrasts for the delivery of the treatment solution. The modified code (MIN3P-D) provides a direct coupling between density-dependent fluid flow, solute transport, contaminant treatment, and geochemical reactions. The model is used to simulate a field trial of TCE oxidation in a sandy aquifer that is underlain by an aquitard. Three-dimensional simulations are conducted for a coupled reactive system comprised of ten aqueous components, two mineral phases, TCE (dissolved, adsorbed, and NAPL), reactive organic matter, and including ion exchange reactions. Model parameters are constrained by literature data and a detailed data set from the field site under investigation. The general spatial and transient evolution in observed concentrations of the oxidant, dissolved TCE, and reaction products are adequately reproduced by the simulations. The model elucidates the important role of density-induced flow and transport on the distribution of the treatment solution into NAPL containing regions located at the aquifer–aquitard interface. Model results further suggest that reactions that do not directly affect the stability of MnO4 have a negligible effect on solution density and MnO4 delivery.  相似文献   
53.
• Possible formation pathways of H2S were revealed in thiophene pyrolysis. • The influence of hydrogen radicals on thiophene pyrolysis was examined. • Thiophene decomposition starts with hydrogen transfer between adjacent C atoms. • The presence of hydrogen radicals significantly promotes the formation of H2S. Pyrolysis is an efficient and economical method for the utilization of waste rubber, but the high sulfur content limits its industrial application. Currently, the migration and transformation of the element S during pyrolysis of waste rubber is far from well known. In this work, a density functional theory (DFT) method was employed to explore the possible formation pathways of H2S and its precursors (radicals HS· and S·) during the pyrolysis of thiophene, which is an important primary pyrolytic product of rubber. In particular, the influence of reactive hydrogen radicals was carefully investigated in the thiophene pyrolysis process. The calculation results indicate that the decomposition of thiophene tends to be initiated by hydrogen transfer between adjacent carbon atoms, which needs to overcome an energy barrier of 312.4 kJ/mol. The optimal pathway to generate H2S in thiophene pyrolysis involves initial H migration and S-C bond cleavage, with an overall energy barrier of 525.8 kJ/mol. In addition, a thiol intermediate that bears unsaturated C-C bonds is essential for thiophene pyrolysis to generate H2S, which exists in multiple critical reaction pathways. Moreover, the presence of hydrogen radicals significantly changes the decomposition patterns and reduces the energy barriers for thiophene decomposition, thus promoting the formation of H2S. The current work on H2S formation from thiophene can provide some theoretical support to explore clean utilization technologies for waste rubber.  相似文献   
54.
Statistical Issues in Assessing Anthropogenic Background for Arsenic   总被引:1,自引:0,他引:1  
Conceptual and statistical issues surrounding the estimation of a background concentration distribution for arsenic are reviewed. How background area is defined and samples collected are shown to impact the shape and location of the probability density function that in turn affects the estimation and precision of associated distributional parameters. The overall background concentration distribution is conceptualized as a mixture of a natural background distribution, an anthropogenic background distribution and a distribution designed to accommodate the potential for contamination site samples being included into the background sample set. This concept is extended to a discussion of issues surrounding estimation of natural and anthropogenic background distributions for larger geographic areas. Finally, the mixture model is formally defined and statistical approaches to estimating its parameters discussed.  相似文献   
55.
There is little information on trimethylnaphthalenes (TMNs) which are constituents of diesel fuel and bitumen emissions. In this study, a theoretical investigation of the electronic properties of all trimethylnaphthalene (TMN) isomers and their relation to biodegradation are presented. Equilibrium geometries, ionization potentials (IPs), electron affinities (EAs), dipole moments and electronic dipole polarizabilities of TMN isomers calculated by ab initio and Density Functional Theory (DFT) methods are reported. Polarizability and dipole moment computations have been performed in gas and in water solution using the polarizable continuum model (PCM). The results obtained show that the IP value varies little along the series of isomers while averaged static dipole polarizabilities (〈α〉) increase on passing from α,α,α-TMN to β,β,β-TMN isomers. This indicates that the binding affinity between TMNs and active site of bacterial enzymes is mainly determined by dispersive and inductive effects. Therefore, the computed polarizability values of TMNs can be used as predictors of the rates of biodegradation of TMNs.  相似文献   
56.
在W.J.Padgett等对随机水质模型研究的基础上,本文以样本资料为重要信息,直接推求BOD和DO的联合分布函数。以此为基础,结合地面水水质标准,推出BOD-DO的耦合达标率公式,同时结合Dobbins模型导出了上游断面的BOD-DO概率边界值计算式。以沱江流域顺河场至中瓷厂水质资料作为实例进行计算,结果表明模型有广阔应用前景。   相似文献   
57.
For anisotropic density functions of e.g. fruit or leaf dispersal, most mathematical research is only done in polar coordinates. However, in software solutions aiming to derive inverse models for real world dispersal data, Cartesian coordinates may be preferred for several reasons. Thus, we introduce an anisotropic model in Cartesian coordinates following the approach in Wälder et al. (2009) with the von Mises approach. By introducing a correction factor, we thereby consider the fundamental attribute, that the integral over a density function with respect to the Cartesian coordinates has to be equal 1. It may have been overlooked so far that guaranteeing for this attribute needs different approaches whether working in polar or Cartesian coordinates. One result is that our approach can be used also for other anisotropic models rather than models from the von Mises approach.  相似文献   
58.
A primary goal in ecotoxicology is the prediction of population-level effects of contaminant exposure based on individual-level response. Assessment of toxicity at the population level has predominately focused on the population growth rate (PGR), but the PGR may not be a relevant toxicological endpoint for populations at equilibrium. Equilibrium population size may be a more meaningful endpoint than the PGR because a population with smaller equilibrium size is more susceptible to the negative effects of environmental variability. We address the individual-to-population extrapolation problem with modeling utilizing classical mathematical theory. We developed and analyzed a general model applicable to many freshwater fish species, that includes density-dependent juvenile survival and additional juvenile mortality due to toxicity exposure, and we quantified effect on equilibrium population size as a means of assessing toxicity. Individual-level effects are typically greater than population-level effects until the individual effect is large, due to compensatory density-dependent relationships. These effects are sensitive to the recruitment potential of a population, in particular the low-density first-year survival rate Sb. Assuming high Sb could result in underestimating effects of population-level toxicity. The equilibrium size depends directly on Sb, the reproductive potential, the toxin concentration at which mean mortality is 50% (LC50), and the rate at which individual mortality increases with increasing toxin concentration. More experimental data are needed to decrease the uncertainty in estimating these parameters. We then used existing data for selenium toxicity in bluegill sunfish to parameterize a simulation version of the model as an example to assess the effects of environmental stochasticity on toxicity response. Effects of environmental variability resulted in simulated extinctions at much lower toxin concentrations than predicted deterministically.  相似文献   
59.
通过对玉米田杂草的调查,研究了不同密度和品种对玉米田杂草种类和生物量变化及玉米产量的影响。结果表明:在玉米全生育期内共发现以稗草(Echinochloa colonum(Linn.)Link)、水花生(Alternanthera philoxeroides)、水芹(Lepidiumsativum)等为主的21种杂草,以水芹的重要值最高;随密度的增加杂草的总数量和鲜质量减少;半紧凑型品种对杂草数量和生物量的抑制作用大于紧凑型品种,且产量高出了21.99%。密度对玉米产量的影响差异不显著,以B3(57 000株/hm2)产量最高,比常规密度B1(42 000株/hm2)和高密度B4(64 500株/hm2)的产量提高了14.17%和0.6%。可见,应根据玉米的品种类型,因地制宜地确定适宜的种植密度,以利于高产稳产。  相似文献   
60.
An efficient and profitable separation process was proposed to prepare 5N(the purity of the metal solution reaches 99.999%) high-purity nickel from 3N nickel-solutions using Purolite S984. The adsorption performance of this superior resin, especially its selectivity for metal ions,was explored quantitatively. The maximum adsorption capacity for copper was 2.286 mmol/g calculated by the Langmuir model, which was twice as large as that for nickel. In the binary systems, the adsorption capacity for nickel was decreased by 45%, indicating direct competition for the active sites. The infinite separation factor for copper versus nickel exceeded 300, revealing the feasibility of preparing5N-level high-purity nickel solutions, which was further verified using the 800 BV(bed volume) effluent in the column dynamic process.According to the cost–benefit analysis, purification contributed to a profit of approximately 60,000 USD per cycle, and the investment return period was less than 1/3 years. Density functional theory analysis confirmed that four nitrogen atoms would be involved in the coordination complex and thus a structure involving two five-membered rings could be achieved. The X-ray photoelectron spectra confirmed the involvement of nitrogen atoms,implying a coordination ratio of approximately 1:1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号