首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   2篇
  国内免费   7篇
安全科学   36篇
废物处理   3篇
环保管理   4篇
综合类   17篇
基础理论   12篇
污染及防治   20篇
评价与监测   8篇
社会与环境   4篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有104条查询结果,搜索用时 51 毫秒
31.
A comparative evaluation of two Gaussian-based line source models namely, California line source dispersion model version 4 and the general finite line source model, is presented. The concentrations predicted by these models are compared with background-corrected ambient concentrations measured at three different distances from a motorway and performance of both models assessed in the context of integrated transport–environment modelling for regulatory purposes.  相似文献   
32.
A measuring campaign was conducted in a street canyon (Runeberg St.) in Helsinki in 2003–2004. The concentrations of NO x , NO2, PM10 and PM2.5 were measured at street level and at roof level at an urban background location. This study utilises the data measured from 1 Jan to 30 April, 2004, when wind speed and direction measurements were also conducted on-site at the roof level. The computational fluid dynamics model ADREA-HF was used to compute the street concentrations, and the results were compared with the measurements. The predictions for the selected cases agreed fairly well (within < 25 % for 15 min average values) with the measured data, except for two cases: a windward flow in case of a low wind speed, and a moderate southerly flow parallel to the street canyon. The main reasons for the differences of predictions and measurements are the negligence of traffic-induced turbulence in the modelling and an under-prediction of ventilation of urban background air from a crossing street. Numerical results are presented for various example cases; these illustrate the formation of the vortices in the canyon in terms of the wind direction and speed and the influence of the characteristics of the flow fields on the concentration distributions.  相似文献   
33.
复杂地形机械湍流扩散的粒子随机行走模拟   总被引:2,自引:0,他引:2  
应用粒子随机行走模拟方法模拟了高架点源在中性情况下在复杂地形上的排放,并将模拟结果与风洞实验进行了比较,二者能较好地吻合。虽然将该方法用于复杂地形大气扩散计算在技术上不存在什么困难,但是在确定模式基本参数等方面,还应该慎重考虑。   相似文献   
34.
汽车尾气的初期扩散与扩散参数   总被引:9,自引:0,他引:9  
通过风洞模拟实验,分析研究汽车尾流区的流场特性,确定了汽车机械扰动产生的尾气初期扩散范围,提出了一种考虑初期扩散影响的确定近距离扩散参数的简易方法。现场示踪实验和实测资料的验证表明,用该方法确定尾气扩散参数是可靠的。  相似文献   
35.
Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 Ls(-1) and 81 Ls(-1), average stream width was 5.5m and average stream depth was 0.2m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 1.0m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross-section. We show that the unsupported assumption of complete mixing may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mixing and one-dimensional modeling must be checked against actual field conditions, even in small streams.  相似文献   
36.
    
• Bioaerosols are produced in the process of wastewater biological treatment. • The concentration of bioaerosol indoor is higher than outdoor. • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals. • Inhalation is the main route of exposure of bioaerosol. • Both the workers and the surrounding residents will be affected by the bioaerosol. Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.  相似文献   
37.
1 INTRODUCTION According to the Environmental Protection Law of P.R. China, and the Environmental Protection Management Method on Construction Projects the Technical Guidelines for Environmental Impact Assessment (EIA) (HJ/T 2.1~2. 3-93) have defined how environmental impact assessment should be carried out for construction projects, in terms of the general principle, methodology, contents and requirements. Technical Guidelines for Environmental Impact Assessment on the Atmosphe…  相似文献   
38.
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.  相似文献   
39.
Denys S  Gombert D  Tack K 《Chemosphere》2012,88(7):806-812
Fires might be the source of persistent organic pollutants (POPs) such as dioxins, furans (PCDD/Fs) and/or polychlorobiphenyls (PCBs) in the environment. In the perspective of defining legal responsibilities a thorough characterization of the impact of such an event should be carried out. However, such characterization is not easy as the environment integrates both local and diffuse sources of such molecules. Thus, a combined approach, which includes gathering field surveys, modeling and laboratory experiments, should be conducted. The objective of this work is to illustrate different approaches to give sufficient insight to determine the actual impact of wood fire on the environment. The work was carried out at the vicinity of a burnt down parcel. The fired material was a mixture of wood and PCB-contaminated soils as the site was a former pyralene-disposal site. Modeling, soil and lichen sampling and experimental combustion were carried out to delineate the contamination for each chemical and to define the area within the fire that was responsible for the environmental contamination. Concentrations of PCDD/F and PCBs were very high on the burnt plot. The combined approach determined that the furans were the predominant compounds in the smoke emitted by the fire. Based on this tracer, it was possible to demonstrate that in terms of environmental contamination of PCDD/F, the impact of the fire was restricted to a 2 km radius from the burnt down plot. For PCBs, no specific tracer was identified. In this case, the delineation of the impact could only be empirical, based on the total concentration of the chemicals.  相似文献   
40.
The predictive potential of air quality models and thus their value in emergency management and public health support are critically dependent on the quality of their meteorological inputs. The atmospheric flow is the primary cause of the dispersion of airborne substances. The scavenging of pollutants by cloud particles and precipitation is an important sink of atmospheric pollution and subsequently determines the spatial distribution of the deposition of pollutants. The long-standing problem of the spin-up of clouds and precipitation in numerical weather prediction models limits the accuracy of the prediction of short-range dispersion and deposition from local sources. The resulting errors in the atmospheric concentration of pollutants also affect the initial conditions for the calculation of the long-range transport of these pollutants. Customary the spin-up problem is avoided by only using NWP (Numerical Weather Prediction) forecasts with a lead time greater than the spin-up time of the model. Due to the increase of uncertainty with forecast range this reduces the quality of the associated forecasts of the atmospheric flow.In this article recent improvements through diabatic initialization in the spin-up of large-scale precipitation in the Hirlam NWP model are discussed. In a synthetic example using a puff dispersion model the effect is demonstrated of these improvements on the deposition and dispersion of pollutants with a high scavenging coefficient, such as sulphur, and a low scavenging coefficient, such as cesium-137. The analysis presented in this article leads to the conclusion that, at least for situations where large-scale precipitation dominates, the improved model has a limited spin-up so that its full forecast range can be used. The implication for dispersion modeling is that the improved model is particularly useful for short-range forecasts and the calculation of local deposition. The sensitivity of the hydrological processes to proper initialization implies that the spin-up problem may reoccur with changes in the model and increased model resolution. Spin-up should be an ongoing concern for atmospheric modelers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号