首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   2篇
  国内免费   8篇
安全科学   36篇
废物处理   3篇
环保管理   4篇
综合类   17篇
基础理论   12篇
污染及防治   20篇
评价与监测   8篇
社会与环境   4篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有104条查询结果,搜索用时 311 毫秒
51.
A large vapour cloud explosion (VCE) followed by a fire is one of the most dangerous and high consequence events that can occur in petrochemical facilities. The current process of safety practice in the industry in VCE assessment is to assume that all VCEs are deflagration. This assumption has been considered for nearly three decades. In recent years, major fire and VCE incidents in fuel storage depots gained considerable attention in extreme high explosion overpressure due to the transition from Deflagration to Detonation (DDT). Though the possibility of DDTs is lower than deflagrations, they have been identified in some of the most recent large-scale VCE incidents, including Buncefield (UK), 2005, San Juan explosion (US), 2009, and IOCL Jaipur (India), 2009 event. Such an incident established the need to understand not only VCE but also the importance of avoiding the escalation of minor incidents into much more devastating consequences.Despite decades of research, understanding of the fundamental physical mechanisms and governing factors of deflagration-to detonation transition (DDT) transition remains mostly elusive. An extreme multi-scale, multi-physics nature of this process uncertainly makes DDT one of the “Grand Challenge” problems of typical physics, and any significant developments toward its assured insistence would require revolutionary step forward in experiments, theory, and numerical modelling. Under certain circumstances, nevertheless, it is possible for DDT to occur, and this can be followed by a propagating detonation that quickly consumes the remaining detonable cloud. In a detonable cloud, a detonation creates the worst accident that can happen. Because detonation overpressures are much higher than those in a deflagration and continue through the entire detonable cloud, the damage from a DDT event is more severe. The consideration of detonation in hazard and risk assessment would identify new escalation potentials and recognize critical buildings impacted. This knowledge will allow more effective management of this hazard.The main conclusion from this paper is that detonations did occur in Jaipur accident at least part of the VCE accidents. The vapour cloud explosion could not have been caused by a deflagration alone, given the widespread occurrence of high overpressures and directional indicators in open uncongested areas containing the cloud. Additionally, the major incident has left many safety issues behind, which must be repeatedly addressed. It reveals that adequate safety measures were either underestimated or not accounted for seriously. This article highlights the aftermath of the IOCL Jaipur incident and addresses challenges put forward by it.  相似文献   
52.
The present paper describes the theory behind the “plume rise from warehouse or pool fires model” as implemented in the software package EFFECTS. This model simulates the rising of buoyant plumes due to the density difference between the hot combustion products and the ambient air. The plume rise model calculates the maximum height at which the released material will be in equilibrium with the density of the air, and presents the resulting trajectory of the plume, including hazard distances to specific concentration threshold levels. These parameters will be determined depending on the wind speed, atmospheric stability class and the fire's convective heat production, leading to potential penetration of the mixing layer.Additionally, the penetration of the smoke plume through the temperature inversion layer is assessed. If the convective heat of production is sufficient to penetrate the mixing layer, the smoke plume will be trapped above the mixing layer. When this occurs, the (potentially toxic) combustion products do not disperse back below the mixing layer, thus, the individuals at ground level are not exposed to the harmful combustion products. If the convective heat of production is not sufficient to penetrate the mixing layer, the smoke plume may experience the so-called reflection phenomena which will trap the smoke plume below the mixing layer. This could have more dangerous consequences for individuals who then might be exposed to harmful combustion products at ground level.Moreover, this paper includes the validation of the model against experimental data as well as to other widely validated mathematical models. The experiments and mathematical models used for the validation are described, and a detailed discussion of the results is included, with a statistical and graphical comparison against the field data.  相似文献   
53.
Preparedness of emergency evacuation for the leakage of toxic substances in chemical plants is very important in order to reduce damage. In order to implement an emergency evacuation properly, it is necessary to comprehensively and concretely determine the conditions of the leakage and atmospheric conditions and predict the consequences of the dispersed gases. Repeated training for emergencies is also essential. In order to realize effective evacuation, a prediction model of the evacuation area that anyone can use to obtain the same results both accurately and promptly is developed in the present study. The prediction model is designed such that the wind speed and atmospheric conditions are automatically set, and the leakage rate is the only input parameter, so that anyone can use the model easily. In addition, the model can also predict the atmospheric parameters for up to 3 h and can calculate the evacuation distance so that smooth evacuation can be achieved for changing atmospheric conditions. Finally, the evacuation area is defined by statistically analysed wind fluctuations, and a series of emergency evacuation measures is implemented.  相似文献   
54.
The predictive potential of air quality models and thus their value in emergency management and public health support are critically dependent on the quality of their meteorological inputs. The atmospheric flow is the primary cause of the dispersion of airborne substances. The scavenging of pollutants by cloud particles and precipitation is an important sink of atmospheric pollution and subsequently determines the spatial distribution of the deposition of pollutants. The long-standing problem of the spin-up of clouds and precipitation in numerical weather prediction models limits the accuracy of the prediction of short-range dispersion and deposition from local sources. The resulting errors in the atmospheric concentration of pollutants also affect the initial conditions for the calculation of the long-range transport of these pollutants. Customary the spin-up problem is avoided by only using NWP (Numerical Weather Prediction) forecasts with a lead time greater than the spin-up time of the model. Due to the increase of uncertainty with forecast range this reduces the quality of the associated forecasts of the atmospheric flow.In this article recent improvements through diabatic initialization in the spin-up of large-scale precipitation in the Hirlam NWP model are discussed. In a synthetic example using a puff dispersion model the effect is demonstrated of these improvements on the deposition and dispersion of pollutants with a high scavenging coefficient, such as sulphur, and a low scavenging coefficient, such as cesium-137. The analysis presented in this article leads to the conclusion that, at least for situations where large-scale precipitation dominates, the improved model has a limited spin-up so that its full forecast range can be used. The implication for dispersion modeling is that the improved model is particularly useful for short-range forecasts and the calculation of local deposition. The sensitivity of the hydrological processes to proper initialization implies that the spin-up problem may reoccur with changes in the model and increased model resolution. Spin-up should be an ongoing concern for atmospheric modelers.  相似文献   
55.
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.  相似文献   
56.
Atmospheric air samples were taken within 3 km from power plants encompassing five different distances and wind directions. Samples were taken between 2002 and 2005 aiming to evaluate the environmental 14C enrichment due to the operation of Brazilian nuclear power plants. The sampling system consisted of a pump connected to a trapping column filled with a 3 M NaOH solution. The trapped CO2 was analyzed for 14C by using a single stage accelerator mass spectrometry (SSAMS).  相似文献   
57.
Denys S  Gombert D  Tack K 《Chemosphere》2012,88(7):806-812
Fires might be the source of persistent organic pollutants (POPs) such as dioxins, furans (PCDD/Fs) and/or polychlorobiphenyls (PCBs) in the environment. In the perspective of defining legal responsibilities a thorough characterization of the impact of such an event should be carried out. However, such characterization is not easy as the environment integrates both local and diffuse sources of such molecules. Thus, a combined approach, which includes gathering field surveys, modeling and laboratory experiments, should be conducted. The objective of this work is to illustrate different approaches to give sufficient insight to determine the actual impact of wood fire on the environment. The work was carried out at the vicinity of a burnt down parcel. The fired material was a mixture of wood and PCB-contaminated soils as the site was a former pyralene-disposal site. Modeling, soil and lichen sampling and experimental combustion were carried out to delineate the contamination for each chemical and to define the area within the fire that was responsible for the environmental contamination. Concentrations of PCDD/F and PCBs were very high on the burnt plot. The combined approach determined that the furans were the predominant compounds in the smoke emitted by the fire. Based on this tracer, it was possible to demonstrate that in terms of environmental contamination of PCDD/F, the impact of the fire was restricted to a 2 km radius from the burnt down plot. For PCBs, no specific tracer was identified. In this case, the delineation of the impact could only be empirical, based on the total concentration of the chemicals.  相似文献   
58.
The present study describes the development of empirical models for the prediction of various trace metals i.e., Mn, Cu, Fe, Zn and Pb found in the leachates generated from the ash ponds of various thermal power plants. The dispersion phenomenon of these trace metals followed first order reaction rate kinetics. The empirical models for individual trace metals derived from the lab scale models data correlate well with the real field data with regression coefficients varying from 0.93 to 0.98. The predicted concentrations of the trace metals varied within ±3% of the observed values in the leachates generated from the ash ponds of four thermal power plants with standard deviation varying from 0.001 to 0.032. The empirical models derived from the study can be applied for prediction of trace metals in leachates generated from similar thermal power plants.  相似文献   
59.
A three dimensional diffusion model has been developed for computing the concentration of PM10 from Kerman Cement Plant, Iran. This model incorporates source-related factors, meteorological factors, surface roughness, and settling particles to estimate pollutant concentration from continuous sources. The study focused on the local environmental impact of Kerman Cement Plant. The performance of the model was found to be in good agreement with measured data; the average absolute percent deviation is 25.53%. In addition, the result of this modeling shows that the PM10 concentration in the ambient air at distances of about 600–1,400 m from the stacks is higher than the WHO guidelines of an annual average of 260 μg/m3.  相似文献   
60.
通过实验的方法对怠速条件下汽车排气污染物在排气尾流中的扩散特性进行了研究.测定了怠速条件下汽车排气尾流中的污染物体积分数及其分布,并比较分析了3种不同类型汽车的污染物排放体积分数及其变化.实验结果表明,怠速时汽车排气尾流中的污染物体积分数按照近似指数函数的趋势迅速降低到接近大气背景值;不同类型汽车排气尾流中的污染物体积分数的差别非常明显;排气方向对汽车排放污染物的扩散及其分布具有重要的影响.研究工作可以为怠速工况下汽车排气污染物对周围环境的影响评价提供更多的有用信息.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号