首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   10篇
  国内免费   7篇
安全科学   294篇
废物处理   1篇
环保管理   12篇
综合类   95篇
基础理论   4篇
污染及防治   21篇
评价与监测   23篇
社会与环境   5篇
  2023年   20篇
  2022年   6篇
  2021年   25篇
  2020年   16篇
  2019年   12篇
  2018年   1篇
  2017年   5篇
  2016年   14篇
  2015年   38篇
  2014年   17篇
  2013年   22篇
  2012年   14篇
  2011年   14篇
  2010年   7篇
  2009年   14篇
  2008年   13篇
  2007年   32篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   6篇
  2001年   20篇
  2000年   21篇
  1999年   23篇
  1998年   35篇
  1997年   12篇
  1996年   6篇
  1995年   12篇
  1994年   2篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
排序方式: 共有455条查询结果,搜索用时 758 毫秒
171.
Computational fluid dynamics is used to investigate the preconditioning aspect of overdriving in dust explosion testing. The results show that preconditioning alters both the particle temperature and distribution prior to flame propagation in the 20-L chamber. A parametric study gives the fluid pressure and temperature, and particle temperature and concentration at an assumed flame kernel development time (10 ms) for varying ignitor size and particle diameter. For the 10 kJ ignitor with 50% efficiency, polyethylene particles under 50 μm reach 400 K and may melt prior to flame propagation. Gases from the ignitor detonation displace the dust from the center of the chamber and may increase local particle concentration up to two times the nominal value being tested. These effects have important implications for explosive testing of dusts in the 20-L chamber and comparing to larger 1-m3 testing, where these effects may be negligible.  相似文献   
172.
Pulverized materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguards to control the plant's safety.PA12 polymer powder processing by laser sintering is characteristic of this tendency. The present work concerns PA12 powder (bimodal particle size distribution: 10 μm and 55 μm) and relates to explosion sensitivity and the thermal degradation of this powder, which can occur during laser sintering. Minimum Ignition Energy is determined using a modified Hartmann tube combined with the Langlie method developed in the PRISME Laboratory. This study shows the influence of parameters such as distance between the electrodes, powder concentration and arc power on MIE values. Theses parameters vary in the range of 3–6 A for the current intensity of the spark and the electrode gap in the range of 2.5–4 mm. The MIE is obtained for a spark gap of 3 mm and current intensity of the 4 A spark in our device. It shows that the MIE is less than 40 mJ for concentrations approaching 1000 g/m3. At lower concentrations (under 150 g/m3) the MIE increases but discrepancies in measurements appear, probably because of the static electricity that creates strong irregularities in dust dispersion. The second part of this study concerns the thermal degradation of the PA12 which is performed by thermogravimetric experiments coupled with mass spectrometric (MS) analysis for gas investigation. The mass loss measurement combined with the gas analysis allows the principal stages of degradation to be determined so as to calculate the kinetics parameter PA12. Experiments have been performed for different heating rates between 1 and 30 K min?1 and the reproducibility of experiments has been verified. The activation energy is determined using two methods: Freidman and KAS. For a reaction rate of between 0.2 and 0.6, the activation energy is nearly constant. The KAS method gives a value of Ea = 250 kJ mol?1 and the Friedman method gives Ea = 300 kJ mol?1. The gas analysis by MS shows that oxidation begins at over 350 °C and finishes at under 650 °C with the formation of CO2 and H2O. Other major peaks with an m/z ratio of 29, 28 and 30 are noticed in this range of temperature. They show the presence of intermediate species such as C2H6, NO or CH2O. The presence of HCN is also detected (m/z ratio of 27).  相似文献   
173.
分析了中国石化沧州分公司10000m^3/h焦化干气制氢装置生产过程中可能发生的燃烧爆炸危险,并提出了预防措施。  相似文献   
174.
Qualitative analysis, process hazard analysis, thermal evaluation, and fault tree analysis were applied to a flashing accident involving a storage tank that contained acrylonitrile-butadiene-styrene (ABS) powder in Taiwan. The accident was caused by combustible powder attached to the inner wall of the tank reaching a high temperature and then melting. Thereafter, the molten powder became glue-like and dropped onto the ABS powder, burning at the tank bottom, causing decomposition of the styrene and butadiene derivatives as well as other combustible gases. The high concentration of combustible powder and low ignition temperature triggered the powder, initiating a dust explosion. Finally, we analyzed the findings of each method and examined the properties of ABS powder, realizing that the root cause of the accident included an insufficient understanding of the characteristics of ABS and the failure to comply with the management procedures of hot work. Recommendations and countermeasures were proposed that could proactively ameliorate process safety.  相似文献   
175.
Current standard test methods for electric-spark minimum ignition energies (MIEs) of dust clouds in air require that a series inductance of at least 1–2 mH be included in the electric-spark discharge circuit. The reason is to prolong the spark discharge duration and thus minimize the spark energy required for ignition. However, when assessing the minimum electrostatic energy ½CU2 for dust cloud ignition by accidental electrostatic-spark discharges, current testing standards require that the series inductance of at least 1–2 mH be removed from the spark discharge circuit. No other changes of apparatus and test procedure are required. The present paper questions whether this simple approach is always adequate. The reason is that in practice in industry accidental electrostatic-spark discharge circuits may contain large ohmic resistances due to corrosion, poor electrical grounding connections, poorly electrically conducting construction materials etc. The result is increased spark discharge durations and reduced mechanical disturbance of the dust cloud by the blast wave emitted by the spark. Therefore, testing for minimum ½CU2 for ignition by accidental electrostatic spark discharges may not only require removal of the series inductance of 1–2 mH from the standard MIE spark discharge circuit. Additional tests may be needed with one or more quite large series resistances Rs inserted into the spark discharge circuit. The present paper proposes a modified standard test procedure for measurement of the minimum electrostatic-spark ignition energy of dust clouds that accounts for these effects.  相似文献   
176.
The effect of CaCO3 powder, a typical inert dust, on the flame spread characteristics of wood dust layers was studied using an experimental device to understand the ignition characteristics of and develop inert explosion-proof technology for deposited wood dust. The results showed that the flame spread velocity (FSV) of the mixed dust layer was affected by the dispersion effect of CaCO3 powder and physical heat absorption. As the CaCO3 powder mass fraction increased, the FSV of the dust layer first increased and then decreased, reaching a peak at a 50% mass fraction. Moreover, the front-end temperature of the flame gradually decreased, and the red spark faded. The combustion reaction of the mixed dust layer could be more completed, and the colour of the combustion residue changed from charcoal black to charcoal grey. The coupling effect of the initial temperature and wind speed can promote an increase in the FSV in the mixed dust layer. The Gauss–Amp model of the FSV of the wood dust layer and mass fraction of CaCO3 powder showed that the peak of the FSV occurred when the mass fraction of CaCO3 powder was between 40 and 50%. Thus, a good inerting and explosion-proof effect can be achieved by using CaCO3 powder with a mass fraction of more than 50%; it can improve the whole inerting process. Inert explosion-proof technology should be considered when assessing fire and explosion risk of dust in real process industry situations.  相似文献   
177.
A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400∼900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.  相似文献   
178.
The structure of flame propagating through lycopodium dust clouds has been investigated experimentally. Upward propagating laminar flames in a vertical duct of 1800 mm height and 150×150 mm square cross-section are observed, and the leading flame front is also visualized using by a high-speed video camera. Although the dust concentration decreases slightly along the height of duct, the leading flame edge propagates upwards at a constant velocity. The maximum upward propagating velocity is 0.50 m/s at a dust concentration of 170 g/m3. Behind the upward propagating flame, some downward propagating flames are also observed. Despite the employment of nearly equal sized particles and its good dispersability and flowability, the reaction zone in lycopodium particles cloud shows the double flame structure in which isolated individual burning particles (0.5–1.0 mm in diameter) and the ball-shaped flames (2–4 mm in diameter; the combustion time of 4–6 ms) surrounding several particles are included. The ball-shaped flame appears as a faint flame in which several luminous spots are distributed, and then it turns into a luminous flame before disappearance. In order to distinguish these ball-shaped flames from others with some exceptions for merged flames, they are defined as independent flames in this study. The flame thickness in a lycopodium dust flame is observed to be 20 mm, about several orders of magnitude higher than that of a premixed gaseous flame. From the microscopic visualization, it was found that the flame front propagating through lycopodium particles is discontinuous and not smooth.  相似文献   
179.
针对市政排污管网等典型受限空间内可燃气体爆燃风险,建立由水平管道和竖直分支管道构成的数值模型,研究竖直分支管道不同泄爆开启压力对甲烷爆燃压力的影响.研究结果表明:不同泄爆开启压力条件下,管道内存在爆燃压力积聚和泄放的双重效应;水平管道内各测点压力时程曲线均表现为先增大后减小而后出现亥姆霍兹振荡,随着与爆源距离的增加,初...  相似文献   
180.
Behavior of dust/air mixtures is very complex and difficult to predict since it depends on material properties as well as boundary conditions. Without other influences airborne particles deposit due to gravity but the time it takes for total deposition as well as easiness of resurrection depends very much on the specific dust sample and the boundary conditions. It still lacks a complete understanding of all interacting reasons and one approach is using experimentally determined characteristics, one is named dustiness.Dustiness is the tendency of dust to form clouds and to stay airborne. Dustiness is determined with two basic principles, which are light attenuation and ratio of filled-in and measured mass. Assessment of dustiness of industrial powders has been done for a long time regarding work place safety. Dustiness is used there to determine inhalable fraction and to evaluate health risks. Lately it became interesting in dust explosion protection as well. Dustiness could be used to optimize determination of zones, adaption of venting area and/or for positioning of suppression systems.Dustiness can be useful in many ways but is not a physical property of dusts, therefore it depends on material properties such as density, particle size distribution, shape and water content as well as boundary conditions or determination method. This makes it very difficult to compare dustiness for different techniques and apparatuses and determination method as well as results should be considered carefully. This work gives an overview of existing standards, recent research and suggests improvements to the new dustiness as proposed for dust explosion protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号