首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   10篇
  国内免费   7篇
安全科学   294篇
废物处理   1篇
环保管理   12篇
综合类   95篇
基础理论   4篇
污染及防治   21篇
评价与监测   23篇
社会与环境   5篇
  2023年   20篇
  2022年   6篇
  2021年   25篇
  2020年   16篇
  2019年   12篇
  2018年   1篇
  2017年   5篇
  2016年   14篇
  2015年   38篇
  2014年   17篇
  2013年   22篇
  2012年   14篇
  2011年   14篇
  2010年   7篇
  2009年   14篇
  2008年   13篇
  2007年   32篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   6篇
  2001年   20篇
  2000年   21篇
  1999年   23篇
  1998年   35篇
  1997年   12篇
  1996年   6篇
  1995年   12篇
  1994年   2篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
排序方式: 共有455条查询结果,搜索用时 656 毫秒
381.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   
382.
To develop the application of explosion venting technology in high-pressure vessels, a new model for the design of dust explosion venting size was presented, which took the physicochemical phenomenon deriving from the elevation of the static activation pressure into account. Firstly, for confined pressure rise, the wall quenching effect originating from the dust flame thickness was considered by adopting the three-zone model. Secondly, for the venting pressure rise, the energy loss due to the discharge of high-energy burnt mixture (quantified as the specific surface area loss of the flame) was taken into account and the induced turbulence factor was introduced. Thirdly, for the venting pressure drop, a dynamic pressure relief capability evaluation model which takes into account the flame morphology evolution (tear-shaped flame) and the proportion of discharged mixture (relative volume ratio) at elevated activation pressure was proposed. The predicted maximum reduced pressure and venting size were checked against the PMMA explosion experiments and a more great performance was obtained compared with standards.  相似文献   
383.
Highly destructive combustible dust explosions, which is prone to cause secondary explosion, has been a concern in industrial processes. To understand the current development and status of research on dust explosions, 1276 publications related to dust explosions from 1998 to 2021 were indexed through the Web of Science Core Collection database. CiteSpace and VOSviewer were used to visualize and analyze the collected literature information. The number of articles related to dust explosions has increased from 12 in 1998 to 191 in 2021. China, the United States, and Canada are the major contributors in this field. Dalhousie University, Beijing Institute of Technology, and Dalian University of Technology are at the core of dust explosion research. Wei Gao, Paul Amyotte, and Chi-Min Shu are the most prolific researchers. Journal of Loss Prevention in the Process Industries, Powder Technology, and Process Safety and Environmental Protection are the major sources of publications related to dust explosions. The research topic of dust explosions mainly evolves into four aspects: explosion characteristics and influencing factors, research media, explosion suppression, and numerical simulation. New research hotspots have appeared related to gas–dust hybrid mixtures, nanomaterials, and powder suppressants. The results can help researchers in the dust explosion field to quickly determine the research frontier and the overall situation.  相似文献   
384.
Handling combustible dusts not only continues to pose a risk to industry but can also affect the safety of society. Explosion risk could be avoided or mitigated trying to guarantee inherent safety throughout the product life chain. One way to reduce the risks when dealing with combustible dust is to increase the Minimum Ignition Energy (MIE) in order to decrease combustible dust ignition sensitivity. To achieve this decrease, the inertization technique, also known as moderation, will be used. It consists of adding inert powders or humidity to the combustible dust. As sometimes end-users also must deal with the handling of flammable dusts, this study aims to find the most optimal inert for toner waste from printers and Holi powder (organic coloured dust from Indian parties), taking Lycopodium as a reference. Calcium carbonate, sodium bicarbonate and gypsum are proposed as inert materials. In addition, with the aim of giving a second use to biomass boiler waste or boiler slagging, this waste will be analyzed as inert, as well as how humidity affects the combustible dusts. Then, sodium bicarbonate will be tested at different granulometries to evaluate the effect of particle size on moderation process. The tests were carried out in the modified Hartmann apparatus or MIKE 3.0. Mechanisms such as decomposition of inert dust have been analyzed by thermogravimetric analysis (TGA)). The results show that gypsum and moisture are the best performing inert followed by calcium carbonate. Boiler slagging and solid bicarbonate contribute to a decrease in the MIE in some of the tests. The reasons for this deviation are discussed in the presented article. When sodium bicarbonate is analyzed at different particle sizes, it is found that the optimum particle size does not match the particle size of the combustible dust. According to the tests, there is an optimum point for which the inert powder provides better results.  相似文献   
385.
Explosions of gas-dust hybrid mixtures have long been considered as particular cases encountered in specific industrial contexts. However, it should be reminded that during the explosion of an organic powder, the presence of a hybrid mixture composed of the dust itself and its pyrolysis gases is compulsory. On these premises, an experimental study to determine the role of cellulose pyrolysis products (gaseous, condensable and solid) on the global phenomenon is presented. Hybrid mixture explosion tests were exploited to carry out the investigation. The G-G furnace and the 20 L sphere were employed. Several experimental strategies were chosen to demonstrate the impact of pyrolysis reaction on the explosion of organic powders: i) the fuel equivalence ratio of the reactive mixture (case 1), or ii) the mass of reactants (case 2) were respectively kept constant, iii) the effects of water vapor, char and tar were tested. They were next compared to identify the most suitable one. The two first experimental approaches lead to significantly different results: only case 2 keeps the maximum explosion pressure almost constant, but maximum rate of pressure rises and deflagration index greatly decrease when the pyrolysis gases concentration decreases, which highlights the importance of the pyrolysis reaction on the explosion kinetics. It should also be stressed that the maximum explosion severity is not obtained for the pure gases but when a small dust content is added. The same evolution is observed when a small amount of char is introduced to pyrolysis gases, which underlines the influence of the radiative transfer. Adding small amounts of tar to cellulose tends to increase its explosion severity. However, this impact is less than that generated by the addition of pyrolysis gases.  相似文献   
386.
Dust explosions continue to pose a serious threat to the process industries handling combustible powders. According to a review carried out by the Chemical Safety Board (CSB) in 2006, 281 dust explosions were reported between 1980 and 2005 in the USA, killing 119 workers and injuring 718. Metal dusts were involved in 20% of these incidents. Metal dust deflagrations have also been regularly reported in Europe, China and Japan.The term “metal dusts” encompasses a large family of materials with diverse ignitability and explosibility properties. Compared to organic fuels, metal dusts such as aluminum or magnesium exhibit higher flame temperature (Tf), maximum explosion pressure (Pmax), deflagration index (KSt), and flame speed (Sf), making mitigation more challenging. However, technological advances have increased the efficiency of active explosion protection systems drastically, so the mitigation of metal dust deflagrations has now become possible.This paper provides an overview of metal dust deflagration suppression tests. Recent experiments performed in a 4.4 m3 vessel have shown that aluminum dust deflagrations can be effectively suppressed at a large scale. It further demonstrates that metal dust deflagrations can be managed safely if the hazard is well understood.  相似文献   
387.
A series of medium-scale experiments on vented hydrogen deflagration was carried out at the KIT test side in a chamber of 1 × 1 × 1 m3 size with different vent areas. The experimental program was divided in three series: (1) uniform hydrogen–air mixtures; (2) stratified hydrogen–air mixtures within the enclosure; (3) a layer deflagration of uniform mixture. Different uniform hydrogen–air mixtures from 7 to 18% hydrogen were tested with variable vent areas 0.01–1.0 m2. One test was done for rich mixture with 50% H2. To vary a gradient of concentration, all the experiments with a stratified hydrogen–air mixtures had about 4%H2 at the bottom and 10 to 25% H2 at the top of the enclosure. Measurement system consisted of a set of pressure sensors and thermocouples inside and outside the enclosure. Four cameras combined with a schlieren system (BOS) for visual observation of combustion process through transparent sidewalls were used. Four experiments were selected as benchmark experiments to compare them with four times larger scale FM Global tests (Bauwens et al., 2011) and to provide experimental data for further CFD modelling. The nature of external explosion leading to the multiple pressure peak structure was investigated in details. Current work addresses knowledge gaps regarding indoor hydrogen accumulations and vented deflagrations. The experiments carried out within this work attend to contribute the data for improved criteria for hydrogen–air mixture and enclosure parameters to avoid unacceptable explosion overpressure. Based on theoretical analysis and current experimental data a further vent sizing technology for hydrogen deflagrations in confined spaces should be developed, taking into account the peculiarities of hydrogen–air mixture deflagrations in presence of obstacles, concentration gradients of hydrogen–air mixtures, dimensions of a layer of flammable cloud, vent inertia, etc.  相似文献   
388.
Foam technology is more efficient than water sprays for dust control in coal mines, but the traditional foam system is complex and poses problems related to foam production and spraying application, with high water consumption, unstable equipment and relatively low utilization efficiency of foam. This paper describes an optimized foam system which overcomes these disadvantages. The proposed foam generator has a self-suction unit that uses a turbulent-flow water jet to automatically draw in ambient air and foaming agent, thereby eliminating the need for compressed-air hoses and pipes. As well as simplifying the system, it solves the current problem of water backflow created by high-pressure compressed air. A refined foam spraying structure was developed for use in conjunction with an operating roadheader as it produces and diffuses dust. The structure consists of foam distribution supports and arc-fan nozzles. It can produce a more focused, continuous and uniform coverage at the source of the dust. The optimized system consumes less water and foaming agent, and achieves greater dust-suppression efficiency than methods in current use.  相似文献   
389.
采用蒙特卡罗方法模拟计算了锅炉燃烧排放的烟尘、烟气的折算排放浓度、排放速率的相对标准不确定,给出了各个输入量的相对标准不确定度分量。依据模拟计算结果对锅炉烟尘、烟气测量不确定度评定的数学模型进行了简化,探讨了采用灵敏度公式评定烟尘、烟气测量结果的合成不确定度中应当注意的问题,为锅炉燃烧排放的烟尘、烟气测量不确定的评定提供了依据。  相似文献   
390.
通过对1960-2005年新疆54个气象站的气象资料进行分析,研究了新疆不同强度等级沙尘暴天气的时空分布年际演变趋势.结果显示:新疆各强度等级沙尘暴天气的发生区域均在逐年缩小,强沙尘暴、扬沙发生区域有东移的趋势,浮尘空间分布格局显现出向南退缩的趋势.沙尘暴空间格局变动较频繁没有明显的移动趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号