首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   80篇
  国内免费   126篇
安全科学   362篇
废物处理   21篇
环保管理   42篇
综合类   412篇
基础理论   78篇
污染及防治   70篇
评价与监测   39篇
社会与环境   16篇
灾害及防治   25篇
  2024年   4篇
  2023年   30篇
  2022年   19篇
  2021年   54篇
  2020年   43篇
  2019年   39篇
  2018年   21篇
  2017年   23篇
  2016年   31篇
  2015年   59篇
  2014年   38篇
  2013年   55篇
  2012年   48篇
  2011年   50篇
  2010年   36篇
  2009年   41篇
  2008年   29篇
  2007年   68篇
  2006年   40篇
  2005年   49篇
  2004年   19篇
  2003年   31篇
  2002年   23篇
  2001年   31篇
  2000年   35篇
  1999年   31篇
  1998年   41篇
  1997年   19篇
  1996年   12篇
  1995年   19篇
  1994年   5篇
  1993年   11篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有1065条查询结果,搜索用时 31 毫秒
121.
Unlike metallic dust layers, the layer flammability levels (LFL) of non-metallic dust layers exhibit a wide range from Class 1 (No self-sustained combustion) to Class 6 (explosive combustion). However, determinations of layer flammability have not considered the effect of inclination angle, thereby potentially underestimating fire hazard of combustible dust layers in many industrial situations. In this research, inclined dust layers showed greater fire hazard than did horizontally oriented dust layers. For example, LFL of wood dust jumped from class 3 to class 5 when layers were positioned with an incline. Flame spread rate of PMMA dust layers increased from 1.8 to 3.6 mm/s when the angle of inclination increased from 0 to 40°. Even small amounts of solid inertant significantly decreased surface layer fires. The required amount of inertant to completely inert layer fires was far less than that for smoldering layer fires or dust explosions.  相似文献   
122.
To reveal the effects of different inert gases on explosion characteristics during low density polyethylene (LDPE) dust explosion and optimize the explosion-proof process, eight N2 (CO2)/air mixed inerting conditions were experimentally studied. Typical inerting conditions with 12 L cylindrical explosive tank were used to study the characteristics on the flame propagation. The thermogravimetric analysis with related theories were used to further explain the mechanism and quantities in low density polyethylene (LDPE) dust explosion with different inert gases. The results showed that the reduction of O2 concentration could effectively delay the progress of flame growth process and weaken the effect of dust combustion reaction. The flame growth process of condition (N2/air (18% O2)) was 2.05 times slower than that of the non-inert condition. The explosion strength was obviously reduced, and the characteristic parameters such as explosion pressure and flame propagation speed were also affected by the decrease of O2 concentration. For LDPE powder, the smaller the median diameter, the greater the explosion intensity and the lower the limiting oxygen content (LOC). The LOC with CO2 was usually higher than that with N2 and the effect of CO2 was significantly better than N2 in inerting.  相似文献   
123.
In many industrial installations, particulate solids (cereals, agri-food products, coal, plants, etc.) are stored or processed. Self-heating of these products, which can lead to fires and explosions, can occur in a variety of situations. Examples include large storage at room temperature, formation of a layer on a hot surface, layer deposited on a surface – insulating or conductive – in a hot environment or even storage of product exposed to heating on one side.The main parameters that determine the occurrence of self-heating are the size of the container, the temperature, the residence time and the characteristics of the product. Depending on the type of situation encountered and these implementation conditions, the analysis of self-heating risks must be based on specific models and/or parameters.This paper presents the different variants and combinations of the theoretical model from the theory of thermal runaway to represent self-heating, taking into account in particular the symmetry or asymmetry of heating, reagent consumption and boundary conditions. It also discusses their adaptation to the previous identified industrial situations.Nine products were chosen to be representative of those used in the different considered industrial situations. They were subjected to self-heating basket tests in isothermal ovens in order to determine the parameters for applying the described theoretical models. These results were compared with the results of self-heating tests in layers of different thicknesses in a hot environment, on an insulating or conductive plate, using a specially developed test protocol, as well as with the results of standardized tests of minimum ignition temperature in 5 mm layers.This led to the proposal of the most appropriate theoretical model to represent the self-heating phenomenon for each of the four identified industrial situations.This analysis can promote better design of industrial equipment and production conditions (temperatures, volumes or product flows …) in order to prevent fires and explosions.  相似文献   
124.
Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.  相似文献   
125.
The spatial development of a passive scalar plume is studied within the inhomogeneous turbulence of a boundary layer flow in a recirculating laboratory flume with a smooth bed. The source of the scalar is located flush with the bed, and the low-momentum source design is intended to simulate a diffusive-type scalar release. A weakly diffusive fluorescent dye is used as the scalar. Planar laser-induced fluorescence (PLIF) techniques were used to record the structure of the plume at a spatial resolution of 150 μm. The measured structure of the mean concentration field is compared to an analytical solution for shear-free, homogeneous turbulence. The laboratory plume exhibits spatial development in the mean concentration field that deviates from the self-similar behavior predicted by the analytical solution; this deviation is due to the mean shear and inhomogeneity of the turbulence. In particular, the influence of the viscous sublayer on the plume development is seen to be significant. Nonetheless, the analytical solution replicates some of the features seen in the laboratory plume, and the solution suggests methods of reducing the laboratory data even for cases where the results deviate from the analysis. We also examine the spatial development of the root-mean-square (rms) fluctuating concentration field, and use scalar probability density functions to examine the relationship between the mean and fluctuating concentrations.  相似文献   
126.
调查发现广州市屋顶自然生长的维管植物有49科109属128种,植物种类较多的科为菊科、禾本科、桑科、景天科、茜草科和鸭跖草科;屋顶自然生长的植物种类数量与环境受污染程度成反比,而与周围植物的多少成正比;屋顶自然生长的植物由于长期适应屋顶的极端环境,形成了的一些独特的生态生物学特征。基于上述结果配置相应的植物组合,设计适于屋顶绿化的生态系统箱、配制相应土壤并进行技术集成,观测其生长和隔热效应。同时进行空白对照、黑网荫蓬对照、生态隔热层对照、普通土壤种植区对比试验,发现生态隔热层和生态系统箱具有成本低、易维持、隔热好、景观美的效果。  相似文献   
127.
东北过伐林灌木层物种多样性与林分因子的典型相关分析   总被引:8,自引:0,他引:8  
研究林分特征尤其是经营上可以控制的因子对生物多样性的影响,将有助于制定合理的经营措施来维持和保护生物多样性,本文作者以我国东北过伐林区3种典型天然林类型为对象,采用典型相关分析方法,研究影响灌木层物种多样性的主要因子。结果表明:影响灌木层物种多样性的主要因子包括土壤含水率,树种多样性和林分密度;灌木层多样性组的变异被林分组第一典型变量解释的比例为68.32%,仍有31.68%的变异不能得到解释。  相似文献   
128.
介绍了球团竖炉烟尘治理的改造经验,总结了电除尘工程概况及效果。  相似文献   
129.
韶钢水泥厂在进行干法生产时,会产生大量的粉尘,严重影响生产和厂区周围居民的正常生活,危害严重。通过一些综合防治措施,不仅保护了环境,而且还可回收数量可观的有价原料、成品或半成品。  相似文献   
130.
化学纤维栅湿式除尘是一种复合机理的新型湿式过滤除尘技术,其过滤风速为2~10m/s,阻力仅为200~500Pa,除尘效率达到99.62%,能很好解决矿山溜井卸矿产生的粉尘,使溜井含尘气流经净化后达到新鲜风流卫生标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号