首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1823篇
  免费   136篇
  国内免费   139篇
安全科学   302篇
废物处理   36篇
环保管理   775篇
综合类   345篇
基础理论   312篇
污染及防治   147篇
评价与监测   105篇
社会与环境   38篇
灾害及防治   38篇
  2024年   3篇
  2023年   32篇
  2022年   23篇
  2021年   50篇
  2020年   64篇
  2019年   55篇
  2018年   30篇
  2017年   53篇
  2016年   68篇
  2015年   82篇
  2014年   89篇
  2013年   87篇
  2012年   68篇
  2011年   121篇
  2010年   61篇
  2009年   134篇
  2008年   88篇
  2007年   79篇
  2006年   73篇
  2005年   86篇
  2004年   63篇
  2003年   75篇
  2002年   62篇
  2001年   55篇
  2000年   62篇
  1999年   64篇
  1998年   50篇
  1997年   35篇
  1996年   42篇
  1995年   27篇
  1994年   20篇
  1993年   21篇
  1992年   18篇
  1991年   15篇
  1990年   10篇
  1989年   14篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   10篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1973年   2篇
  1970年   2篇
排序方式: 共有2098条查询结果,搜索用时 31 毫秒
111.
Waite, Ian R., Jonathan G. Kennen, Jason T. May, Larry R. Brown, Thomas F. Cuffney, Kimberly A. Jones, and James L. Orlando, 2012. Comparison of Stream Invertebrate Response Models for Bioassessment Metrics. Journal of the American Water Resources Association (JAWRA) 48(3): 570-583. DOI: 10.1111/j.1752-1688.2011.00632.x Abstract: We aggregated invertebrate data from various sources to assemble data for modeling in two ecoregions in Oregon and one in California. Our goal was to compare the performance of models developed using multiple linear regression (MLR) techniques with models developed using three relatively new techniques: classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tolerance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O/E) as response variables and land use/land cover as explanatory variables. Responses were generally linear; therefore, there was little improvement to the MLR models when compared to models using CART and RF. In general, the four modeling techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each region. However, results from the BRT models showed significant improvement over the MLR models for each region; increases in R2 from 0.09 to 0.20. The O/E metric that was derived from models specifically calibrated for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O/E R2 values were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent a good alternative to MLR for modeling species distribution relative to environmental variables.  相似文献   
112.
Stone, Wesley W. and Robert J. Gilliom, 2012. Watershed Regressions for Pesticides (WARP) Models for Predicting Atrazine Concentrations in Corn Belt Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 970‐986. DOI: 10.1111/j.1752‐1688.2012.00661.x Abstract: Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region‐specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP‐CB) were developed for annual maximum moving‐average (14‐, 21‐, 30‐, 60‐, and 90‐day durations) and annual 95th‐percentile atrazine concentrations in streams of the Corn Belt region. The WARP‐CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model‐development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model‐development sites. The WARP‐CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine‐use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP‐CB models. The WARP‐CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine‐use intensities of 17 kg/km2 of watershed area or greater.  相似文献   
113.
A thin film coats impervious urban surfaces that can act as a source or sink of organic pollutants to the greater environment. We review recent developments in the understanding of film and film-associated pollutant behavior and incorporate them into an unsteady-state version of the fugacity based Multimedia Urban Model (MUM), focusing on detailed considerations of surface film dynamics. The model is used to explore the conditions under which these atmospherically-derived films act as a temporary source of chemicals to the air and/or storm water. Assuming film growth of 2.1 nm d−1 (Wu et al., 2008a), PCB congeners 28 and 180 reach air-film equilibrium within hours and days, respectively. The model results suggest that the film acts as a temporary sink of chemicals from air during dry and cool weather, as a source to air in warmer weather, and as a source to storm water and soil during rain events. Using the downtown area of the City of Toronto Canada, as a case study, the model estimates that nearly 1 g d−1 of ∑5PCBs are transferred from air to film to storm water.  相似文献   
114.
We evaluated the exposure to pesticides from the consumption of passion fruits and subsequent human health risks by combining several methods: (i) experimental field studies including the determination of pesticide residues in/on passion fruits, (ii) dynamic plant uptake modelling, and (iii) human health risk assessment concepts. Eight commonly used pesticides were applied onto passion fruits cultivated in Colombia. Pesticide concentrations were measured periodically (between application and harvest) in whole fruits and fruit pulp. Measured concentrations were compared with predicted residues calculated with a dynamic and crop-specific pesticide uptake model, namely dynamiCROP. The model accounts for the time between pesticide application and harvest, the time between harvest and consumption, the amount of spray deposition on plant surfaces, uptake processes, dilution due to crop growth, degradation in plant components, and reduction due to food processing (peeling). Measured and modelled residues correspond well (r2 = 0.88-0.99), with all predictions falling within the 90% confidence interval of the measured values. A mean error of 43% over all studied pesticides was observed between model estimates and measurements. The fraction of pesticide applied during cultivation that is eventually ingested by humans is on average 10−4-10−6, depending on the time period between application and ingestion and the processing step considered. Model calculations and intake fractions via fruit consumption based on experimental data corresponded well for all pesticides with a deviation of less than a factor of 2. Pesticide residues in fruits measured at recommended harvest dates were all below European Maximum Residue Limits (MRLs) and therefore do not indicate any violation of international regulatory thresholds.  相似文献   
115.
This study modeled the impact on freshwater ecosystems of pharmaceuticals detected in biosolids following application on agricultural soils. The detected sulfonamides and hydrochlorothiazide displayed comparatively moderate retention in solid matrices and, therefore, higher transfer fractions from biosolids to the freshwater compartment. However, the residence times of these pharmaceuticals in freshwater were estimated to be short due to abiotic degradation processes. The non-steroidal anti-inflammatory mefenamic acid had the highest environmental impact on aquatic ecosystems and warrants further investigation. The estimation of the solid-water partitioning coefficient was generally the most influential parameter of the probabilistic comparative impact assessment. These results and the modeling approach used in this study serve to prioritize pharmaceuticals in the research effort to assess the risks and the environmental impacts on aquatic biota of these emerging pollutants.  相似文献   
116.
Information on distribution and relative abundance of species is integral to sustainable management, especially if they are to be harvested for subsistence or commerce. In northern Australia, natural landscapes are vast, centers of population few, access is difficult, and Aboriginal resource centers and communities have limited funds and infrastructure. Consequently defining distribution and relative abundance by comprehensive ground survey is difficult and expensive. This highlights the need for simple, cheap, automated methodologies to predict the distribution of species in use, or having potential for use, in commercial enterprise. The technique applied here uses a Geographic Information System (GIS) to make predictions of probability of occurrence using an inductive modeling technique based on Bayes' theorem. The study area is in the Maningrida region, central Arnhem Land, in the Northern Territory, Australia. The species examined, Cycas arnhemica and Brachychiton diversifolius, are currently being 'wild harvested' in commercial trials, involving sale of decorative plants and use as carving wood, respectively. This study involved limited and relatively simple ground surveys requiring approximately 7 days of effort for each species. The overall model performance was evaluated using Cohen's kappa statistics. The predictive ability of the model for C. arnhemica was classified as moderate and for B. diversifolius as fair. The difference in model performance can be attributed to the pattern of distribution of these species. C. arnhemica tends to occur in a clumped distribution due to relatively short distance dispersal of its large seeds and vegetative growth from long-lived rhizomes, while B. diversifolius seeds are smaller and more widely dispersed across the landscape. The output from analysis predicts trends in species distribution that are consistent with independent on-site sampling for each species and therefore should prove useful in gauging the extent of resource availability. However, some caution needs to be applied as the models tend to over predict presence which is a function of distribution patterns and of other variables operating in the landscape such as fire histories which were not included in the model due to limited availability of data.  相似文献   
117.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   
118.
In this paper, a dynamic model is developed in which coastal quality can be improved, restored, or maintained by two distinct user groups; this is done by identifying a context that ensures an increase (or a greater increase) in coastal quality in terms of specific features that characterise the user groups. The results demonstrate that integrated coastal management is always better than non-integrated management. Moreover, when there is a low degree of interest in maintaining the coastal use over time, only integrated community-based (CB) coastal management will increase the coastal quality. Even when the interest in maintaining the coastal use over time is high, an integrated CB approach is preferred if the willingness to pay for coastal improvements is great and the marginal inefficiency of investments in coastal improvements is low, because the coastal quality improves to a greater extent; if not, only an integrated top-down (TD) approach to coastal management will increase the coastal quality. These results suggest that developing countries should always adopt a CB approach; in contrast, developed countries should adopt a CB approach where local stakeholders attach direct values to the coastal quality, and adopt a TD approach where the general population attaches indirect (option or existence) values to coastal quality.  相似文献   
119.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   
120.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号