首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   0篇
安全科学   236篇
综合类   6篇
社会与环境   2篇
灾害及防治   6篇
  2023年   16篇
  2022年   1篇
  2021年   30篇
  2020年   32篇
  2019年   6篇
  2016年   17篇
  2015年   26篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1986年   1篇
排序方式: 共有250条查询结果,搜索用时 250 毫秒
151.
The effect of turbulence on unsteady premixed flame propagation and associated pressure rise during explosion of stoichiometric CH4/air in closed spherical vessels of different size was investigated by means of CFD simulation. Computations were run by varying the vessel volume from 20 l to 200 l and to 1 m3.Numerical results have shown that, at fixed initial conditions, the turbulence kinetic energy induced by the propagating flame increases with increasing vessel volume. It has been demonstrated that the cubic relationship does not apply. Under the conditions investigated, a correction to the cubic relationship has been proposed to take into account the effect of the vessel volume on turbulence.  相似文献   
152.
The ignition of a combustible environment by hot jets is a safety concern in many industries. In explosion protection concepts, for a protection of the type “flameproof enclosures” a maximum permissible gap is of major importance. In this work a numerical framework is described to investigate the ignition processes by a hot turbulent jet which flows out from such gaps. A Probability Density Function (PDF) method in conjunction with a reaction-diffusion manifold (REDIM) technique is used to model the turbulent reactive flow. In this paper the ignition of a stoichiometric mixture of hydrogen/air gas by a hot exhaust turbulent jet is examined. The impact of the nozzle diameter on the ignition delay time is investigated, too. The method is used to explore the maximum nozzle diameter for specific boundary conditions for which there is no ignition.  相似文献   
153.
An important blast injury mechanism is the rupture of the lungs and the gastrointestinal tract. In explosives safety studies and threat analysis the empirical model of Bowen is often used to quantify this mechanism. The original model predicts the lethality for a person in front of a reflecting surface caused by simple Friedlander blast waves. Bowen extended the applicability to persons in prone position and standing in the free field by making assumptions about the pressure dose at these positions. Based on new experimental data, some authors recently concluded that the lethality for a person standing in the free field is the same as for a person in front of a reflecting surface, contrary to Bowen's assumptions.In this article, we show that only for a short duration blast wave, the load on a person standing in the free field is comparable to that on a person in front of a reflecting surface. For long positive phase durations, a safe and conservative assumption is that the load on a person standing in the free field is the sum of the side-on overpressure and the dynamic pressure. This hypothesis is supported by common knowledge about blast waves and is illustrated with numerical blast simulations.In a step by step derivation we present a new standard for the prediction of lethality caused by Friedlander blast waves, which will be included in the NATO Explosives Safety Manual AASTP-4. The result is a comprehensive engineering model that can be easily applied in calculations.  相似文献   
154.
A previous article dealt with turbulent jet flow modelling with the aim at developing a method for estimating the size of explosive clouds following a high Reynolds number release, within hazardous area classification scheme. The results have demonstrated that the standard EN 60079-10 (2009) largely overestimates the real size of clouds resulting from a piping or a vessel leak. On the other hand, laminar jets are possible also at moderately high Reynolds numbers; furthermore, a reduced momentum, typical of laminar jets, is often assumed in QRA studies, as a conservative assumption, due to the expected lower air entrainment and to the corresponding larger size of the flammable cloud volume. These considerations have suggested the suitability to extend the previous analysis also to laminar regime, taking into account the effect of density and viscosity differences between air and flammable gas.  相似文献   
155.
Combustible liquids in the form of aerosols are important for many industrial processes. Therefore the problem of explosion hazards posed by the aerosols becomes increasingly more prominent. To correctly assess the explosion risk and fulfil the requirements of the ATEX directive, it is necessary to obtain information regarding the flammable and explosive properties of the aerosols. Unlike in the case of gases and dusts, no standard procedures aimed at obtaining quantitative information of this type exist. Factors that influence the explosion dynamics of aerosols include: concentration, droplet size, temperature etc. Some of these factors are strongly dependent on the aerosol generation methods. A prototype apparatus was designed and constructed to address that dependence. The apparatus was used in an attempt to determine the basic explosion parameters of liquid flammable aerosols. The device consisted of a 5-L spherical vessel equipped with a pump-injection system that generated aerosols as well as a spark ignition source. A wide variety of injection settings were tested to select the most suitable conditions over a broad range of concentrations and fluid properties. A measurement procedure was developed for operating the device. Prototype tests were carried out with fluids commonly used in industry: isopropanol and kerosene. The tests demonstrated the significant influence of the vessel wall temperature on the result accuracy. Correct temperature control made it possible to obtain relationships between the aerosol concentration and the following explosion parameters: maximum explosion pressure and maximum rate of pressure rise.  相似文献   
156.
157.
This paper describes experiences and results of experiments with several metallic dusts within the nanometer range. The nano dusts (aluminium, iron, zinc, titanium and copper) were tested in a modified experimental setup for the test apparatus 20 L-sphere (also known as 20-L Siwek Chamber), that enables the test samples to be kept under inert atmospheric conditions nearly until ignition. This setup was already introduced in earlier papers by the authors. It was designed to allow the determination of safety characteristics of nano powders under most critical circumstances (e.g. minimisation of the influence of oxidation before the test itself). Furthermore the influence of passivation on explosion behaviour is investigated and additional tests with deposited dust were carried out to describe the burning behaviour of all dusts. For a better characterisation all samples were tested with a simultaneous thermal analysis (STA). To minimise the influence of oxidation all samples were handled at inert conditions until shortly before ignition or start of the test respectively.  相似文献   
158.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   
159.
A project was performed for the Explosion Research Cooperative to develop algorithms for predicting the frequencies of explosions based on a variety of design, operating and environmental conditions. Algorithms were developed for estimating unit-based explosion frequencies, such as those reported in API Recommended Practice 752, but in more detail and covering a much broader range of chemical process types. The project also developed methods for predicting scenario-based explosion frequencies, using frequencies of initiating events and conditional probabilities of immediate ignition and delayed ignition resulting in explosion. The algorithms were based on a combination of published data and expert opinion.  相似文献   
160.
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号