首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   0篇
  国内免费   2篇
安全科学   237篇
废物处理   1篇
环保管理   1篇
综合类   11篇
基础理论   1篇
污染及防治   1篇
社会与环境   2篇
灾害及防治   7篇
  2023年   16篇
  2022年   1篇
  2021年   30篇
  2020年   32篇
  2019年   6篇
  2016年   18篇
  2015年   27篇
  2014年   13篇
  2013年   8篇
  2012年   9篇
  2011年   11篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有261条查询结果,搜索用时 250 毫秒
211.
This study presents a numerical model to analyze the sudden failure of compressed natural gas (CNG) cylinder onboard a CNG vehicle. The model is developed using COMSOL. It accounts for the real gas effects, physical energy, and combustion of the flammable gas. The model is tested using experimental data.The study highlight compression energy as one of the serious concern. An unintentional rupture of a compressed cylinder filled with natural gas would generate a rapid energy release in the form of the pressure energy (blast). The release of energy and gas would cause rapid mixing and generate overpressure and may also cause flash fire. A detailed failure frequency analysis is also done to analyze the effectiveness of barriers. This study identifies critical points for the safe operation of the CNG system onboard a vehicle.  相似文献   
212.
To forestall, control, and mitigate the detrimental effects of aluminium dust, a 20-L near-spherical dust explosion experimental system and an HY16429 type dust-cloud ignition temperature test device were employed to explore the explosion characteristics of micron-sized aluminium powder under different ignition energies, dust particle sizes, and dust cloud concentration (Cdust) values; the minimum ignition temperature (MIT) values of aluminium powder under different dust particle sizes and Cdust were also examined. Flame images at different times were photographed by a high-speed camera. Results revealed that under similar dust-cloud concentrations and with dust particle size increasing from 42.89 to 141.70 μm, the MIT of aluminium powder increased. Under various Cdust values, the MIT of aluminium dust clouds attained peak value when concentrations enhanced. Furthermore, the increase of ignition energy contributed to the increase of the explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex]. When dust particle size was augmented gradually, the Pex and (dP/dt)ex attenuated. Decreasing particle size lowered both the most violent explosion concentration and explosive limits.  相似文献   
213.
The flame destabilization mechanism of hydrogen-propane-air mixture is firstly revealed. The effects of unstable flame formation on pressure rise rate and burning rate are quantified. Finally, the theoretical prediction of explosion pressure behavior is performed by considering diffusive-thermal and hydrodynamic instability. The results demonstrated that before the explosion pressure starts to climbe, as the propane fraction increases, the effective Lewis number of lean and stoichiometric mixture undergoes the transition from Leeff < 1.0 to Leeff > 1.0, the stabilizing effect of diffusive-thermal instability continues to reduce for the rich mixture. After the explosion pressure starts to climbe, the hydrogen-propane flame becomes more unstable, which is mainly attributed to enhancing hydrodynamic instability. The maximum rate of pressure rise and burning rate should be augmented by unstable flame formation, the flame instabilities must be considered in the explosion pressure evaluation.  相似文献   
214.
In the present work, a series of experiments have been performed to analyze the explosion characteristics of ethanol-gasoline with various blended ratios (0%, 5%, 10%, 15%, 30%, 50%, 70%, 80%, and 100%). A vented rectangular vessel with a cross-section of 100 mm × 100 mm, 600 mm long and a 40 mm diameter vent on the top is used to carry out the experiments. The flame propagation is recorded by a phantom high-speed camera with 5000 fps, while the histories of the explosion overpressure are measured by two PCB pressure sensors and the explosion sound pressure level is obtained by a CRY sound sensor. The results indicate that the maximum overpressure and flame propagation speed increases linearly as the blended ratio increases when the initial volume of blended fuel is 1.0 mL; While the change of explosion overpressure and flame propagation speed shows a trend of decreasing at first and then increasing as the concentration increases to 1.8 mL. It is also found that the peak of the sound pressure level exceeds 100 dB under all tests, which would damage the human's hearing. What's more, relationships between explosion overpressure and sound pressure level are examined, and the change of the maximum overpressure can be reflected to some extent by the measurement of the maximum sound pressure level. The study is significant to reveal the essential characteristic of the explosion venting process of ethanol-gasoline under different initial blended ratios, and the results would help deepen the understanding of ethanol-gasoline blended fuels explosion and the assessment of the explosion hazardous.  相似文献   
215.
An explosion that occurred during a nitromethane rectification process is investigated. Experiments were performed in an effort to elucidate the cause of the explosion. All test samples analyzed, including reaction product, crude product, 99% pure product and raffinate, were collected from the accident site. Gas chromatography was used to analyze the components of the samples, thermal analysis determined the exothermic character of the samples and the sample evaporating experiment recorded the reaction phenomena occurring at low liquid level. Based on the experimental results, the excess heat released by the decomposition of overheated raffinate is pinpointed as the root cause of the explosion.  相似文献   
216.
A tragic explosion resulting from a runaway chemical reaction occurred at the T2 Laboratories, Inc. facility in December 2007. The U.S. Chemical Safety Board (CSB) completed an incident investigation of the T2 explosion, identifying the root cause as a failure to recognize the runaway reaction hazard associated with the chemical it was producing. Understanding the consequences of process upset conditions is critical to determine risk. This paper will focus on lessons learned from this incident including a comprehensive hazard assessment for reactive chemicals as well as proper collection and application of adiabatic calorimetry data to characterize the chemical reaction and determine appropriate mitigation strategies. Examples will be provided to establish safer operating conditions, implement safeguards and reduce the overall risk.  相似文献   
217.
Ionic liquids (ILs) are known as room temperature molten salts, which are considered green replacement to traditional organic solvents. The fire hazards of traditional organic solvents mainly depend on the combustibility of their vapors, thus ILs are generally regarded as nonflammable owing to their low volatility. However, recent studies show that ILs may combust due to the potential hazards of thermal decomposition, indicating the issue of fire and explosion of ILs are eager to be evaluated during the applications. In this study, the fire and explosion hazards of IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) are explored in different aspects. The traditional definition of the flammability for the common organic solvent is not thoroughly applicable to [C6mim][NTf2] due to the low volatility. Furthermore, the common definition of reactivity for traditional organic solvents also fails to apply, because the decomposition reaction is indeed an endothermic reaction. However, the auto-ignition of some decomposition products will result in fire and explosion hazards for [C6mim][NTf2]. Therefore the application of such data in safety purposes should be very careful.  相似文献   
218.
Past accident analysis (PAA) is one of the most potent and oft-used exercises for gaining insights into the reasons why accidents occur in chemical process industry (CPI) and the damage they cause. PAA provides invaluable ‘wisdom of hindsight’ with which strategies to prevent accidents or cushion the impact of inevitable accidents can be developed.A number of databases maintain record of past accidents in CPI. The most comprehensive of the existing databases include Major Hazard Incident Data Service (MHIDAS), Major Accident Reporting System (MARS), and Failure and Accidents Technical Information Systems (FACTS). But each of these databases have some limitations. For example MHIDAS can be accessed only after paying a substantial fee. Moreover, as detailed in the paper, it is not infallible and has some inaccuracies. Other databases, besides having similar problems, are seldom confined to accidents in chemical process industries but also cover accidents from other domains such as nuclear power plants, construction industry, and natural disasters. This makes them difficult to use for PAA relating to CPI. Operational injuries not related to loss of containment, are also often included. Moreover, the detailing of events doesn’t follow a consistent pattern or classification; a good deal of relevant information is either missing or is misclassified.The present work is an attempt to develop a comprehensive open-source database to assist PAA. To this end, information on about 8000 accidents, available in different open-source clearing houses has been brought into a new database named by us PUPAD (Pondicherry University Process-industry Accident Database). Multiple and overlapping accident records have been carefully eliminated and a search engine has been developed for retrieval of the records on the basis of appropriate classification. PUPAD doesn’t aim to replace or substitute the well established databases such as MHIDAS and MARS but, rather, aims to compliment them.  相似文献   
219.
Life extension reliability analysis process of decommissioned transportable seamless steel gas cylinders is proposed based on reliability index and applied to a case study in this paper. The index was calculated in terms of material stress, material strength and their probabilistic distributions. Stresses were determined by membrane equations for cylindrical shell and finite element analysis for neck, shoulder and bottom. Yield strength was measured and chosen as material strength. Probabilistic distributions were determined by distribution of material hardness. Decommissioned gas cylinders, which corrode relatively more seriously than others, could be used in the analysis for conservatively determining life extension reliability. In addition, service life of gas cylinders could be extended on condition that their reliability was more than 0.99999. Finally, the proposed analysis process was applied to determine whether some decommissioned transportable seamless steel oxygen cylinders which were manufactured in 1970s could be life extended and shown to be effective.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号