首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   0篇
安全科学   236篇
综合类   6篇
社会与环境   2篇
灾害及防治   6篇
  2023年   16篇
  2022年   1篇
  2021年   30篇
  2020年   32篇
  2019年   6篇
  2016年   17篇
  2015年   26篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1986年   1篇
排序方式: 共有250条查询结果,搜索用时 318 毫秒
11.
This paper mainly studied the influence of particle size distribution on the explosion risk of aluminum powder under the span of large particle size distribution. The measurement was carried out with the 20 L explosion ball and the Hartmann tube. The statistical analysis was used to analyze the relevance between the parameters of explosion risk and the particle size parameters. Test results showed that with the increase of particle size, the sensitivity parameter increases and the intensity parameter deceleration decreases. The effect of particle size change on MEC and MIE of small particle size aluminum powder is relatively small but greater impact on Pm and (dP/dt)m. The small particle size components greatly increasing the sensitivity of the explosion and accelerating the rate of the explosion reaction; while the large particle size component contributes to the maximum explosion pressure. D3,2 particle size dust determines the risk of aluminum powder explosion.  相似文献   
12.
To study the suppression of different porous materials on the explosion of combustible gas, some experiments were implemented. The porous materials were categorized into three kinds, including six subcategories, and the explosion suppression characteristics of the thin iron hoop, one-layer porous materials, two-layer composite porous materials, and three-layer composite porous materials were studied and analyzed. The results show that a rarefaction wave appears in the spherical vessel during the rapid development stage of combustion explosion. Further, the thin iron hoop could enhance the gas explosion intensity. And the explosion intensity suppression effect of the porous materials is obvious, the best effects of one-layer, two-layer and three-layer porous materials are from Fe–Ni 10 mm/40 PPI, Fe–Ni 10 mm/90 PPI + Al2O3 10 mm/30 PPI, and Al2O3 10 mm/50 PPI + Fe–Ni 10 mm/40 PPI + SiC 20 mm/20 PPI, respectively. According to the surface morphology of the porous materials, the anti-sintering ability of the three categories of porous materials follows the order of Al2O3 > SiC > Fe–Ni. Besides, the thickness and pore size of the combined porous material was changed, which has a great influence on the explosion pressure and the explosion intensity.  相似文献   
13.
The fire and explosion risks of metal powders admixed with solid inertants have been extensively investigated for many years. However, it remains unclear why such solid mixtures have high potential fire and explosion risk even when mixed with high percentages of non-combustible solids. This paper investigates how to interpret these risks, from a microscopic perspective, with thermal and kinetic parameters including initial ignition temperature, mass unit exothermic energy, activation energy and risk index of spontaneous combustion. The results show that the initial ignition temperature based on TG (Thermogravimetry) analysis is related to ignition sensitivity, and increased with percentage of admixed solid inertant. The unit mass exothermic energy based on DSC (Differential scanning calorimetry) analysis is related to flame spread velocity. Activation energy and the risk index of spontaneous combustion can be used to explain the reactivity and spontaneous combustion hazard, respectively, of metal powders. We conclude that thermal and kinetic parameters may provide another way to describe the fire and explosion risk of combustible powders, especially for nano metal powders due to the laboratory safety in the normative tests for explosion parameter determination.  相似文献   
14.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   
15.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   
16.
Toxic loads and explosion overpressure loads pose grave threats to the offshore oil and gas industry. Many safety measures are adopted to prevent and mitigate the adverse impacts caused by toxic loads and explosion overpressure loads. As a general safety barrier, the process protection system has been widely used but rarely evaluated. In order to assess the barrier ability, the mitigation performance of the process protection system is concerned in this study. Firstly, several chain accidents of H2S-containing natural gas leakage and explosion are simulated by varying the response time of the process protection system with CFD code FLACS. Qualitative assessment is conducted based on the variation of the dangerous load profiles. Furthermore, the quantitative assessment of the mitigation performance is accomplished by considering its ability in reducing the probability of fatality. Emergency evacuation and no emergency evacuation are considered respectively in the quantitative assessment. The results prove that the process protection system takes effect on mitigating the toxic impact and explosion overpressure impact. The results also demonstrate that although the emergency evacuation may result in a severer explosion load to the operator, the process protection system can mitigate the adverse impacts regardless of whether the emergency evacuation is conducted or not.  相似文献   
17.
密闭爆炸容器实验研究及数值模拟   总被引:7,自引:0,他引:7  
实验研究了三种结构的爆炸容器在爆炸载荷下的响应情况;并通过二维多流体欧拉程序对二维爆炸场进行了数值模拟.在这个基础上用NIKE-2D对壳体的动态响应进行数值模拟。  相似文献   
18.
粉尘爆炸反应工程学简要综述   总被引:4,自引:1,他引:4  
1993年在波兰召开的第五届国际粉尘爆炸学术会议上,邓煦帆曾在论文中提议建立粉尘爆炸反应工程学,并提出学科的目的意义、性质、主要组成部分和研究方法。本文拟将国内外有关本学科范围内的贡献,加以简要综述,以期能逐渐形成本学科的自身体系和特点。  相似文献   
19.
为了促进我国的爆炸安全研究工作更深入发展,本文列出了利用爆炸激波管技术测定氢气、汽油、铝粉等可爆性物质的爆炸特性。研究表明:这些可爆性物质在一定条件都能形成破坏力极大的爆轰现象。实验确定了氢、汽油和氧混合物的可爆(轰)极限、可燃性极限、混合物临界初始压力等爆炸临界条件。控制可爆性物质的初始条件不超过其爆炸临界条件,能够防止爆轰或爆燃现象发生;添加不参加反应的物质(如氩气、氮气、水蒸汽等)能够使已达到爆炸条件的混合物阻爆。本文的数据可供有关部门参考。  相似文献   
20.
热爆炸理论在粉尘爆炸机理研究中的应用   总被引:9,自引:5,他引:4  
笔者对粉尘爆炸的几种机理进行了简要分析 ,认为粉尘爆炸是由热爆炸引起的。在对粉尘燃烧过程作了较为合理的假设后 ,将热爆炸理论中均温系统的热爆炸判据 ,应用于粉尘爆炸中 ,得出了爆炸下限与粉尘粒径呈线性关系的结论 ,且与实验符合 ,并推导出粉尘的热爆炸判据。结果表明 :用热爆炸理论来解释粉尘爆炸机理是可行的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号