首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   0篇
安全科学   236篇
综合类   6篇
社会与环境   2篇
灾害及防治   6篇
  2023年   16篇
  2022年   1篇
  2021年   30篇
  2020年   32篇
  2019年   6篇
  2016年   17篇
  2015年   26篇
  2014年   13篇
  2013年   8篇
  2012年   7篇
  2011年   11篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   12篇
  2006年   5篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1986年   1篇
排序方式: 共有250条查询结果,搜索用时 593 毫秒
21.
Now in Russian Federation and other countries large-scale oil terminals (volume of one tank exceeds 100 000 m3, total volume of tanks exceeds 300 000 m3) are designed and constructed. Therefore fire safety of such objects becomes a very important task, solution of which is hardly possible without detail fire risk assessment. This study is aimed to a solution of this problem. Potential, individual and social risks were calculated. The potential risk was defined as a frequency of occurrence of hazardous factors of fires and explosions in a given point of space (the so-called risk contours). The individual risk was defined as a frequency of injuring a given person by hazardous factors of fires and explosions. Time of presence of this person in hazardous zones (near the hazardous installation) is taken into account during calculations of the individual risk. Social risk was defined as a dependence of frequency of injuring a given number of people by hazardous factors of fires and explosions on this number. In practice the social risk is usually determined on injuring not less than 10 people.

The oil terminal under consideration includes the following main parts: crude oil storage consisting of three tanks of volume 100 000 m3 each, input crude oil pipeline of diameter 0.6 m, crude oil pumps, output crude oil pipeline of diameter 0.8 m, auxiliary buildings and facilities. The following main scenarios of tank fires have been considered: rim seal fire, pool fire on a surface of a floating roof, pool fire on a total cross-section surface of the tank, pool fire in a dyke, explosions in closed or semiclosed volumes. Fires and explosions in other parts of the terminal are also taken into account. Effects of escalation of accidents are considered.

Risk contours have been calculated both for the territory of the terminal and for the neighbouring space. The potential risk for the storage zone is near 10−4–10−5 year−1, and at a distance 500 m from the terminal the potential risk values do not exceed 10−6 year−1. The values of the individual risk for various categories of workers are in the range of 10−5–10−6 year−1. Because of low number of the workers on the terminal and large distances to towns and villages the social risk value is negligible. These risk values are consistent with practice of the best oil companies, and fire hazard level of the terminal can be accepted as tolerable.  相似文献   

22.
The Pittsburgh Research Laboratory (PRL) of the National Institute for Occupational Safety and Health (NIOSH) and the Mine Safety and Health Administration (MSHA) conducted joint research on dust explosions by studying post-explosion dust samples. The samples were collected after full-scale explosions at the PRL Lake Lynn Experimental Mine (LLEM), and after laboratory explosions in the PRL 20-L chamber and the Fike 1 m3 chamber. The dusts studied included both high- and low-volatile bituminous coals. Low temperature ashing for 24 h at 515 °C was used to measure the incombustible content of the dust before and after the explosions. The data showed that the post-explosion incombustible content was always as high as, or higher than the initial incombustible content. The MSHA alcohol coking test was used to determine the amount of coked dust in the post-explosion samples. The results showed that almost all coal dust that was suspended within the explosion flame produced significant amounts of coke. Measurements of floor dust concentrations after LLEM explosions were compared with the initial dust loadings to determine the transport distance of dust during an explosion. All these data will be useful in future forensic investigations of accidental dust explosions in coal mines, or elsewhere.  相似文献   
23.
Rescue operations during mine fires or methane explosions are highly dangerous for rescue workers. The knowledge of the composition of the coal mine atmosphere and the calculations of its explosibility may help to increase the safety of the rescuers. In the Czech Republic, a system called “Mine Gas Laboratory” (DPL) has been used for these purposes. The DPL allows measurement of the composition of the mine atmosphere and transmits the data necessary for evaluation to the surface. Up to now the explosibility evaluation of the coal mine atmosphere has depended either on the rescuers’ experience or on software code calculation. The code called “Vybuchovy trojuhelnik” (explosion triangle) is a graphical computing system intended for fast assessment of explosibility of fuel–air mixture. This article introduces the code and describes two simple methods of explosibility evaluation. The first method is “explosion triangle analysis”—a graphical method based on empirical graphs transformed into equations. The second method uses thermodynamic calculation based on chemical balance dynamics and Gibbs and Helmholtz energy. According to the requirements of the Czech Bureau of Mining (CBU) and Central Mine Rescue Service (HBZS), the code solves the problems of explosion triangle for both standard and non-standard coal mine atmosphere compositions. Unfortunately, the atmosphere composition must be introduced manually due to the unknown format of the data transmitted from the old DPL model. On 1 September 2005, a project started to develop a new system for on-line monitoring and atmosphere explosibility evaluation. The system should be able to measure CO2, O2, CH4, H2 and CO concentrations as well as the wind speed, temperature and humidity. The “Vybuchovy trojuhelnik” code will be used as a basis for explosibility evaluation, and an on-line connection with the new model of DPL will be established.  相似文献   
24.
The authors investigated the ignitability of aluminium and magnesium dusts that are generated during the shredding of post-consumer waste. The relations between particle size and the minimum explosive concentration, the minimum ignition energy, the ignition temperature of the dust clouds, etc. the relation between of oxygen concentration and dust explosion, the effect of inert substances on dust explosion, etc. were studied experimentally.

The minimum explosive concentration increased exponentially with particle size. The minimum explosive concentrations of the sample dusts were about 170 g/m3 (aluminium: 0–8 μm) and 90 g/m3 (magnesium: 0–20 μm). The minimum ignition energy tended to increase with particle size. It was about 6 mJ for the aluminium samples and 4 mJ for the magnesium samples. The ignition temperature of dust clouds was about 750 °C for aluminium and about 520 °C for magnesium. The lowest concentrations of oxygen to produce a dust explosion were about 10% for aluminium and about 8% for magnesium. A large mixing ratio (more than about 50%) of calcium oxide or calcium carbonate was necessary to decrease the explosibility of magnesium dust. The experimental data obtained in the present investigation will be useful for evaluating the explosibility of aluminium and magnesium dusts generated in metal recycling operations and thus for enhancing the safety of recycling plants.  相似文献   

25.
通过对某企业的一起典型爆炸事故案例进行分析,找出其产生的原因,提出了预防措施。  相似文献   
26.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   
27.
The evaluation of vulnerability of process equipment to explosion is a central issue in the analysis of industrial risks. In this work, we have developed a simplified model, however based on fundamental equations, which includes structural and fluid–dynamic parameters for the target (the industrial equipment) and for the impacting pressure wave (shock waves) or object (fragment, debris) produced by different type of chemical explosions.The validity of methodology has been assessed by case histories. Several insights on the dynamic of structural interaction of the explosion with the target have been obtained, with specific reference to escalation effects.The model derives from the well-known Johnson's number, often adopted in impact engineering.  相似文献   
28.
Mixing of combustible dust and oxidant is one of five essential prerequisites in the dust explosion pentagon, requiring that particles originally in mutual contact within the deposits be separated and suspended in the air. However, dust dispersion never proceeds with 100% efficiency, with inevitable particle agglomeration, and an inherent trend toward settling out of suspension. Dispersibility is defined to describe the ease of dispersion of a dust and the tendency of the particulate matter to remain airborne once a dust cloud has been formed. Pioneers made contributions to classify dust dispersibility by introducing dustiness group (DG), dustability index (DI), NIOSH dispersion chamber and in-situ particle size analysis. Issues remained including the difficulty in comparing results from different methods, as well as the availability of some high-tech testing apparatus.This study aims to provide a quick and universal testing method to estimate the dispersion property of combustible dust. A new dispersibility classification was developed based on dimensionless numbers Hausner ratio and Archimedes number. Four dispersibility classes (DCs) were proposed from one to four, with a larger number meaning better dispersibility. Results for more than a dozen dust samples and mixtures thereof showed the new method is useful in dust explosion research. The consistency in classifying dust dispersion properties between the DC method and previous methods was good. Changes in DC well explained our earlier findings on suppressant enhanced explosion parameter (SEEP) phenomenon attributed to the improvement in dust dispersibility. Hausner ratio and Archimedes number, as easily measured parameters, can be quite advantageous to assess dust dispersibility, permitting a proper risk assessment for the formation of explosible dust clouds.  相似文献   
29.
We have conducted numerical simulations of dust dispersion within the NIOSH Rock Dust Dispersion Chamber. The apparatus consists of a low-speed background ventilation flow down a long box in which is placed a tray containing a rock dust powder. A nozzle upstream of the tray introduces a short pulse of a turbulent horizontal jet flow just above the powder surface. We have utilized an incompressible Reynolds-Averaged Navier-Stokes k-ω model for the turbulent flow; particles are incorporated within a one-way Euler-Lagrangian formalism. The Rock Dust Dispersion Chamber ventilation flow exhibits a recirculation zone just above the powder-containing tray. Aerosolization proceeds via the interplay of the jet pulse flow with the background recirculation flow. The air flow is not well-mixed. The aerosolized dust is convected as a concentration cloud downstream towards the detection zone. For larger particles, gravitational settling depletes the convected cloud, so the instrument behaves as a horizontal elutriator. The instrument is robust with respect to misalignment of the jet nozzle. However, reduced streamwise drift velocity allows mixing to disperse the optically detected dust cloud concentration pulse. Our large particle simulation results compare favorably with published experimental results for large, polydisperse calcium carbonate rock dust.  相似文献   
30.
The safety issue of ethanol gasoline and the methods to control or weaken its explosion have attracted attention. To clarify the effect of C6F12O (perfluoro(2-methyl-3-pentanone)) on the explosion of ethanol gasoline-air mixtures and intrinsic mechanism, the explosion overpressure and flame propagation behavior under different equivalence ratios (φ = 0.6–0.8) and C6F12O concentrations (χinh = 0–4.0%) were experimentally obtained. The detailed inhibitor reaction process was also obtained by CHEMKIN based on a new assembly kinetic mechanism. The results show that the effects of C6F12O on the explosion characteristics of ethanol gasoline varied with χinh and φ. For rich flames, C6F12O is more effective than and heptafluoropropane (C₃HF₇) and nitrogen (N2) in suppressing explosions; for lean and equivalence ratio flames, the addition of C6F12O may result in more severe explosions. The decrease in chemical reactivity is mainly because the mole fractions of OH and H radicals and the proportion of paths H radicals involved decrease after adding C6F12O, and R1500: CF3COF + H = CF3CO + HF, R965: CF2:O + H = CF:O + HF, R863: CF3 + H = CF2 + HF are main suppressing reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号