首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   6篇
  国内免费   2篇
安全科学   248篇
环保管理   4篇
综合类   21篇
基础理论   3篇
污染及防治   2篇
社会与环境   8篇
灾害及防治   7篇
  2023年   17篇
  2022年   3篇
  2021年   32篇
  2020年   33篇
  2019年   6篇
  2018年   1篇
  2016年   20篇
  2015年   30篇
  2014年   13篇
  2013年   12篇
  2012年   8篇
  2011年   14篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   14篇
  2006年   6篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
31.
We have conducted numerical simulations of dust dispersion within the NIOSH Rock Dust Dispersion Chamber. The apparatus consists of a low-speed background ventilation flow down a long box in which is placed a tray containing a rock dust powder. A nozzle upstream of the tray introduces a short pulse of a turbulent horizontal jet flow just above the powder surface. We have utilized an incompressible Reynolds-Averaged Navier-Stokes k-ω model for the turbulent flow; particles are incorporated within a one-way Euler-Lagrangian formalism. The Rock Dust Dispersion Chamber ventilation flow exhibits a recirculation zone just above the powder-containing tray. Aerosolization proceeds via the interplay of the jet pulse flow with the background recirculation flow. The air flow is not well-mixed. The aerosolized dust is convected as a concentration cloud downstream towards the detection zone. For larger particles, gravitational settling depletes the convected cloud, so the instrument behaves as a horizontal elutriator. The instrument is robust with respect to misalignment of the jet nozzle. However, reduced streamwise drift velocity allows mixing to disperse the optically detected dust cloud concentration pulse. Our large particle simulation results compare favorably with published experimental results for large, polydisperse calcium carbonate rock dust.  相似文献   
32.
The safety issue of ethanol gasoline and the methods to control or weaken its explosion have attracted attention. To clarify the effect of C6F12O (perfluoro(2-methyl-3-pentanone)) on the explosion of ethanol gasoline-air mixtures and intrinsic mechanism, the explosion overpressure and flame propagation behavior under different equivalence ratios (φ = 0.6–0.8) and C6F12O concentrations (χinh = 0–4.0%) were experimentally obtained. The detailed inhibitor reaction process was also obtained by CHEMKIN based on a new assembly kinetic mechanism. The results show that the effects of C6F12O on the explosion characteristics of ethanol gasoline varied with χinh and φ. For rich flames, C6F12O is more effective than and heptafluoropropane (C₃HF₇) and nitrogen (N2) in suppressing explosions; for lean and equivalence ratio flames, the addition of C6F12O may result in more severe explosions. The decrease in chemical reactivity is mainly because the mole fractions of OH and H radicals and the proportion of paths H radicals involved decrease after adding C6F12O, and R1500: CF3COF + H = CF3CO + HF, R965: CF2:O + H = CF:O + HF, R863: CF3 + H = CF2 + HF are main suppressing reactions.  相似文献   
33.
Gas explosion is one of the main disasters in coal mining. Plenty of coal gangue are generally distributed in the disaster areas in gob. Experiments were carried out to explore the propagation law of the gas explosion distributed by coal gangue. The variation characteristics of the overpressure, pressure rise rate, and flame shape with void fractions were analyzed. The results showed that the effect of the coal gangue on the explosion intensity changed from suppression to acceleration with the increase of void fraction, the flame front upstream blockage area changed from laminar state to turbulent divergent state, and a reverse flame was formed. When the void fraction of the coal gangue was 0.50–0.65, the maximum overpressure downstream of the blocked area were positively correlated with the void fraction and the critical suppression range was between 0.50 and 0.55. When the void fraction was lower than 0.50, the flame was quenched in the coal gangue, neither the flame nor the pressure could pass through the blocked area. It is helpful to guide the improvement of coal recovery process to avoid the expansion of the explosion impact in coalmine gob.  相似文献   
34.
陕晋蒙三角区自然环境面临的主要灾害及对策   总被引:1,自引:0,他引:1  
彭珂珊 《灾害学》1991,6(3):35-41
陕晋蒙三角区是我国未来一个新能源基地,在全国具有重要的地位。本文从该区的特点出发,论述了自然环境的主要灾害及成因,进而提出了减灾的相应措施与建议。  相似文献   
35.
An accident occurred during a production process of hydroxyurea. Several thermoanalytical techniques were used in order to understand the reason for the accident, even utilising a simulation program. Thermogravimetric analysis and Fourier transform infra-red spectroscopy were performed to identify the decomposition products according to European Directive 96/82/EC, the so-called Seveso II.  相似文献   
36.
In order to study the influence of vacuum degree on gas explosion suppression by vacuum chamber, this study used the 0.2 mm thick polytetrafluoroethylene film as the diaphragm of vacuum chamber to carry out a series of experiments of gas explosion suppression by vacuum chamber with the vacuum degree from −0.01 MPa to −0.08 MPa. The experimental results show that: under the condition of any vacuum degree, vacuum chamber can effectively suppress the explosion flame and overpressure; as vacuum degree changes, the effect of gas explosion suppression using vacuum chamber is slightly different. Vacuum chamber has obvious influence on propagation characteristics of the explosion flame. After explosion flame passes by vacuum chamber, the flame signal weakens, the flame thickness becomes thicker, and the flame speed slows down. With the increase of the vacuum degree of vacuum chamber, the flame speed can be prevented from rising early by vacuum chamber. The higher the vacuum degree is, the more obviously the vacuum chamber attenuates the explosion overpressure, the smaller the average overpressure is, and the better effect of the gas explosion suppression is. Vacuum chamber can effectively weaken the explosion impulse under each vacuum degree. From the beginning of −0.01 MPa, the vacuum chamber can gradually weaken explosion impulse as the vacuum degree increases, and the effect of gas explosion suppression gradually becomes better. When the vacuum degree is greater than −0.04 MPa, the increase of vacuum degree can make the explosion overpressure decrease but have little influence on the explosion impulse. Therefore, the vacuum chamber has the preferable suppression effect with equal to or greater than −0.04 MPa vacuum degree.  相似文献   
37.
Former methods used in the U.S. to assess hazardous and explosible coal dust date back to the 1950s. As mining technologies advanced, so too have the hazards. Given the results of the recent coal dust particle size survey and full-scale experimental mine explosion tests, the National Institute for Occupational Safety and Health (NIOSH) recommended a new minimum standard, in the absence of background methane, of 80% total incombustible content (TIC) be required in the intake airways of bituminous coal mines, replacing the previous 65% TIC requirement. Most important to monitoring and maintaining the 80% TIC is the ability to effectively collect and analyze representative dust samples that would likely disperse and participate in dust explosion propagation. Research has shown that dust suspended on elevated surfaces is usually finer, more reactive, and more readily dispersible while floor deposits of dust are generally coarser and more difficult to disperse given the same blast of air. The roof, rib, and floor portions of the dust samples were collected and analyzed for incombustible content separately and the results were compared to a band sample of the roof, rib, and floor components. Results indicate that the roof and rib dust samples should be kept separate from floor dust samples and considered individually for analyses. The various experimental collection methods are detailed along with preferred sampling approaches that improve the detectability of potentially hazardous accumulations of explosible dust.  相似文献   
38.
Runaway reactions present a potentially serious threat to the chemical process industry and the community; such reactions occur time and time again often with devastating consequences. The main objective of this research is to study the root causes associated with ammonium nitrate (AN) explosions during storage. The research focuses on AN fertilizers and studies the effects of different types of fertilizer compatible additives on AN thermal decomposition. Reactive Systems Screening Tool (RSST) has been used for reactivity evaluation and to better understand the mechanisms that result in explosion hazards. The results obtained from this tool have been reported in terms of parameters such as “onset” temperature, rate of temperature and pressure rise and maximum temperature. The runaway behavior of AN has been studied as a solid and solution in water. The effect of additives such as sodium sulfate (Na2SO4) and potassium chloride (KCl) has also been studied. Multiple tests have been conducted to determine the characteristics of AN decomposition accurately. The results show that the presence of sodium sulfate can increase the “onset” temperature of AN decomposition thus acting as AN thermal decomposition inhibitor, while potassium chloride tends to decrease the “onset” temperature thus acting as AN thermal decomposition promoter.  相似文献   
39.
The hazardous effect of dynamic pressure and strong gas flows induced by a methane–air mixture explosion in underground coal mines is studied. The dynamic pressure effect of a methane–air explosion was analyzed by numerical simulation, in a duct and tunnel. Compared to the overpressure generated by an explosion that can act on a body, the dynamic pressure caused by the high-speed flow of the gaseous combustion products can cause serious damage as well. At the structural opening of a coal mine, the destruction caused by the dynamic pressure induced by a methane–air explosion is more serious than the overpressure. For a tube or tunnel partially filled by a methane–air mixture, the dynamic pressure is lower than the overpressure in the region occupied by the flammable mixture. Beyond the premixed region, the dynamic pressure is of the same order of magnitude as the overpressure.  相似文献   
40.
Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号