首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
安全科学   110篇
综合类   1篇
  2021年   22篇
  2020年   16篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   9篇
  2010年   9篇
  2009年   1篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  1998年   1篇
排序方式: 共有111条查询结果,搜索用时 109 毫秒
51.
PROBLEM: Driver celeration (speed change) behavior of bus drivers has previously been found to predict their traffic incident involvement, but it has also been ascertained that the level of celeration is influenced by the number of passengers carried as well as other traffic density variables. This means that the individual level of celeration is not as well estimated as could be the case. Another hypothesized influence of the number of passengers is that of differential quality of measurements, where high passenger density circumstances are supposed to yield better estimates of the individual driver component of celeration behavior. METHOD: Comparisons were made between different variants of the celeration as predictor of traffic incidents of bus drivers. The number of bus passengers was held constant, and cases identified by their number of passengers per kilometer during measurement were excluded (in 12 samples of repeated measurements). RESULTS: After holding passengers constant, the correlations between celeration behavior and incident record increased very slightly. Also, the selective prediction of incident record of those drivers who had had many passengers when measured increased the correlations even more. CONCLUSIONS: The influence of traffic density variables like the number of passengers have little direct influence on the predictive power of celeration behavior, despite the impact upon absolute celeration level. Selective prediction on the other hand increased correlations substantially. This unusual effect was probably due to how the individual propensity for high or low celeration driving was affected by the number of stops made and general traffic density; differences between drivers in this respect were probably enhanced by the denser traffic, thus creating a better estimate of the theoretical celeration behavior parameter C. The new concept of selective prediction was discussed in terms of making estimates of the systematic differences in quality of the individual driver data.  相似文献   
52.
Purpose: Motor-vehicle crashes continue to be the leading cause of death for teenagers in the United States. The United States has some of the youngest legal driving ages worldwide. The objective of this study was to determine rates and factors associated with injury crashes among 14- and 15-year-old drivers and how these varied by rurality. Methods: Data for this cross-sectional study of 14- and 15-year-old drivers were obtained from the Iowa Department of Transportation from 2001 to 2013. Crash and injury crash rates were calculated by rurality. The relationship between crash and driver factors and injury was assessed using logistic regression. Findings: Teen drivers, aged 14 and 15 years, had a statewide crash rate of 8 per 1,000 drivers from 2001 to 2013. The majority of crashes occurred in urban areas (51%), followed by in town (29%), remote rural areas (13%), and suburban areas (7%). Crash and injury crash rates increased as level of rurality increased. The odds of an injury crash increased more than 10-fold with the presence of multiple other teens as passengers, compared to no passengers (OR = 10.7, 95% CI: 7.1–16.2). Conclusions: Although 14- and 15-year-old drivers in Iowa have either limited unsupervised (school permits) or supervised only driving restrictions, they are overrepresented in terms of crashes and injury crashes. Rural roads and multiple teen passengers are particularly problematic in terms of injury outcomes. Practical applications: Results from this study support passenger restrictions and teen driving interventions designed with a rural focus.  相似文献   
53.
Introduction: Due to their size and weight, trucks require more space and time to make left turns when exiting or entering a roadway. Therefore, appropriate median treatments are critical for roadways with substantial truck traffic. The two-way left-turn lane (TWLTL) and raised median (RM) are the two types of median most commonly used to improve roadway mobility and manage roadway accessibility. However, previous studies on these median treatments have focused primarily on the general traffic conditions and geometric roadway features without considering the truck traffic impact. Method: To fill this gap, this study investigates the truck impacts on TWLTL and RM by considering two major influencing factors – truck percentage and roadway access point density. First, a negative binomial regression is developed to analyze the relationship between crash frequency and various influencing factors. Next, the crash rate difference analysis between the TWLTL and RM is conducted to identify critical points for these two factors. Results: The findings indicate that, compared with RM, TWLTL has significantly higher crash frequency, especially for roadways with a higher percentage of trucks. This suggests that the percentage of trucks should be taken into consideration when selecting an appropriate type of roadway median.  相似文献   
54.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   
55.
56.
IntroductionAge- and health-related changes, alongside declines in driving confidence and on-road exposure, have been implicated in crashes involving older drivers. Interventions aimed at improving behind-the-wheel behavior are diverse and their associated impact remains unclear. This systematic review examined evidence on older driver training with respect to (1) road safety knowledge; (2) self-perceived changes in driving abilities; and (3) behind-the-wheel performance. Method Nine databases were searched for English-language articles describing randomized controlled trials (RCTs) and non-RCTs of driver training interventions aimed at those aged 55+ who did not have medical or other impairments that precluded licensure. Quality appraisals were conducted using Cochrane’s Risk of Bias Tool (RoB) and Risk Of Bias In Non-randomized Studies – of Interventions tool (ROBINS – I). [PROSPERO; registration no. CRD42018087366]. Results Twenty-five RCTs and eight non-RCTs met the inclusion criteria. Interventions varied in their design and delivery where classroom-based education, or a combination of classroom-based education with on-road feedback, improved road safety knowledge. Training tailored to individual participants was found to improve self-perceived and behind-the-wheel outcomes, including crashes. Conclusions Interventions comprised of tailored training can improve knowledge of road safety, changes to self-perception of driving abilities, and improved behind-the-wheel performance of older drivers. Future research should compare modes of training delivery for this driver population to determine the optimal combinations of off- and/or on-road training. Practical applications Training programs aimed at older drivers should be supported by theory and research evidence. By conducting comparative trials with a sufficient sample size alongside well-defined outcomes that are designed in accordance with reporting guidelines, the most effective approaches for training older drivers will be identified.  相似文献   
57.
Objective: We examined both fatal and injury at-fault crashes of a population of passenger cars fitted with electronic stability control (ESC). Crash rates were calculated in relation to both registration years and mileage. Crash rates were also calculated for a non-ESC car population and crash rate ratios were calculated to compare the crash risk between ESC-fitted and non-ESC-fitted passenger cars.

Methods: Passenger car models with and without ESC were identified (ESC-equipped cars: 3,352,813 registration years; non-ESC-equipped: 5,839,946 registration years) and their vehicle information for the period 2009–2013, including mileage (ESC-equipped vehicles: 89.3 billion kilometers; non-ESC-equipped: 72.4 billion kilometers), was drawn from the national Vehicular and Driver Data Register.

The registry of Finnish road accident investigation teams was accessed and all fatal at-fault crashes among the cars in the study populations (ESC 97; non-ESC 377) for the period 2009–2013 were analyzed. The motor insurance database includes at-fault crashes leading to injuries and was utilized for analyses (ESC: N?=?8,827, non-ESC: N?=?21,437).

Crash rates and crash rate ratios were calculated to evaluate crash risk of both ESC-equipped and non-ESC-equipped passenger cars. Poisson regression was used to model crash involvement rate ratios both per registration year and per mileage for vehicles with ESC and without ESC, controlling for age and gender of the vehicle owner and vehicle mass.

Results: Passenger cars fitted with ESC showed lower crash rates than non-ESC-equipped cars in all crash types studied. In general, the difference in crash rates between ESC-equipped and non-ESC-equipped vehicles was greater when the crashes were compared to the mileage rather than registration years. The mileage-proportional crash rate of ESC-equipped cars was 64% (95% confidence interval, 61%; 67%) lower in run-off-road crashes resulting in injury and as much as 82% (65%; 91%) lower in fatal run-off-road crashes when suicides and disease attacks were not taken into account.

Conclusions: Our results show that modern passenger cars provide a significant crash risk reduction, which depends on both ESC and passive safety features introduced. Results also show that exposure evaluation in terms of registration years (or vehicle population) instead of true mileage can provide an overly pessimistic view of the crash risk.  相似文献   
58.
IntroductionA pedestrian crash occurs due to a series of contributing factors taking effect in an antecedent-consequent order. One specific type of antecedent-consequent order is called a crash causation pattern. Understanding crash causation patterns is important for clarifying the complicated growth of a pedestrian crash, which ultimately helps recommend corresponding countermeasures. However, previous studies lack an in-depth investigation of pedestrian crash cases, and are insufficient to propose a representative picture of causation patterns. Method: In this study, pedestrian crash causation patterns were discerned by using the Driving Reliability and Error Analysis Method (DREAM). One hundred and forty-two pedestrian crashes were investigated, and five pedestrian pre-crash scenarios were extracted. Then, the crash causation patterns in each pre-crash scenario were analyzed; and finally, six distinct patterns were identified. Accordingly, 17 typical situations corresponding to these causation patterns were specified as well. Results: Among these patterns, the pattern related to distracted driving and the pattern related to an unexpected change of pedestrian trajectory contributed to a large portion of the total crashes (i.e., 27% and 24%, respectively). Other patterns also played an important role in inducing a pedestrian crash; these patterns include the pattern related to an obstructed line of sight caused by outside objects (9%), the pattern that involves reduced visibility (13%), and the pattern related to an improper estimation of the gap distance between the vehicle and the pedestrian (10%). The results further demonstrated the inter-heterogeneity of a crash causation pattern, as well as the intra-heterogeneity of pattern features between different pedestrian pre-crash scenarios. Conclusions and practical applications: Essentially, a crash causation pattern might involve different contributing factors by nature or dependent on specific scenarios. Finally, this study proposed suggestions for roadway facility design, roadway safety education and pedestrian crash prevention system development.  相似文献   
59.
Introduction: Speeding is a crucial risk factor for pedestrian safety because it shortens reaction time while increasing the impact force in collisions. Various types of traffic calming measures to prevent speeding have been devised. A speed hump—a raised bump installed in the pavement—has been widely used for this purpose. Method: To evaluate the effectiveness of speed humps, the speed profiles of vehicles passing speed humps were analyzed along with pedestrian crash records near speed humps. Results: The speed profiles showed that vehicles gradually diminished their speeds starting 30 m ahead of speed humps and, immediately after passing the humps, accelerated to regain their original speeds within a distance of 30 m. This speed reduction effect is substantial on both local and major roads: 18.4% and 24.0% reduction in speeds, respectively. The analysis of pedestrian crash records revealed that, inside the zones of speed reduction effect near speed humps (i.e., ±30 m from speed humps), fewer pedestrian crashes per roadway distance occurred and pedestrian injuries were less severe, compared with events outside the effect zones. This safety improvement was greater on major roads than local roads. Practical Applications: This work finds that the speed reductions that occurred near speed humps were gradual and influential ±30 m from their locations, suggesting that the hump installations should be close enough to the pedestrian crossings. It is noteworthy that, albeit that speed humps are more prevalent on local roads, the benefits of speed reduction effects from speed humps were more pronounced on major roads than on local roads. Therefore, speed humps on major roads can be considered a more effective measure for pedestrian safety.  相似文献   
60.

Objective

To estimate the effects of red light camera enforcement on per capita fatal crash rates at intersections with signal lights.

Methods

From the 99 large U.S. cities with more than 200,000 residents in 2008, 14 cities were identified with red light camera enforcement programs for all of 2004-2008 but not at any time during 1992-1996, and 48 cities were identified without camera programs during either period. Analyses compared the citywide per capita rate of fatal red light running crashes and the citywide per capita rate of all fatal crashes at signalized intersections during the two study periods, and rate changes then were compared for cities with and without cameras programs. Poisson regression was used to model crash rates as a function of red light camera enforcement, land area, and population density.

Results

The average annual rate of fatal red light running crashes declined for both study groups, but the decline was larger for cities with red light camera enforcement programs than for cities without camera programs (35% vs. 14%). The average annual rate of all fatal crashes at signalized intersections decreased by 14% for cities with camera programs and increased slightly (2%) for cities without cameras. After controlling for population density and land area, the rate of fatal red light running crashes during 2004-2008 for cities with camera programs was an estimated 24% lower than what would have been expected without cameras. The rate of all fatal crashes at signalized intersections during 2004-2008 for cities with camera programs was an estimated 17% lower than what would have been expected without cameras.

Conclusions

Red light camera enforcement programs were associated with a statistically significant reduction in the citywide rate of fatal red light running crashes and a smaller but still significant reduction in the rate of all fatal crashes at signalized intersections.

Impact on Industry

The study adds to the large body of evidence that red light camera enforcement can prevent the most serious crashes. Communities seeking to reduce crashes at intersections should consider this evidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号