首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   687篇
  免费   86篇
  国内免费   71篇
安全科学   201篇
废物处理   11篇
环保管理   126篇
综合类   246篇
基础理论   86篇
环境理论   2篇
污染及防治   37篇
评价与监测   31篇
社会与环境   56篇
灾害及防治   48篇
  2023年   13篇
  2022年   24篇
  2021年   32篇
  2020年   34篇
  2019年   24篇
  2018年   22篇
  2017年   38篇
  2016年   46篇
  2015年   43篇
  2014年   32篇
  2013年   46篇
  2012年   43篇
  2011年   63篇
  2010年   40篇
  2009年   39篇
  2008年   34篇
  2007年   37篇
  2006年   37篇
  2005年   23篇
  2004年   27篇
  2003年   27篇
  2002年   13篇
  2001年   25篇
  2000年   18篇
  1999年   6篇
  1998年   10篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1980年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有844条查询结果,搜索用时 350 毫秒
461.
成云过程中云水pH值的参数化   总被引:1,自引:0,他引:1  
该文找出了影响云水pH值的主要因素,用统计分析的方法得到它们与云水pH值之间的简单的函数关系。通过参数化研究发现,在一定的变量取值范围内,模式模拟的结果与用函数关系式得到的结果能很好地对应起来,相关系数为0.94。该文参数化所考虑的变量为:气相H2O2,O3,SO2与NH3的浓度,液相Fe3+与Mn2+的浓度,水的含量及温度。   相似文献   
462.
我国大气污染形势严峻,科学合理地评估大气污染的经济损失不仅有益于政策效益分析,同时是“绿色国民经济”核算的一项基础性工作。基于我国2013年2月到2018年7月的区县月度房屋交易数据和7种大气污染指标(AQI、SO2、NO2、CO、O3、PM10、PM2.5)的浓度数据,运用特征价格模型实证量化大气污染物减少的边际支付意愿(MWTP)和总经济损失。首先通过改变理性预期的时间段验证理性预期假设的成立,在此基础上采用理性预期方法解决遗漏变量所导致的内生性问题。研究结果显示:①NO2、CO、PM2.5和PM10每上升1μg/m3,房价分别降低约2.04%、0.028%、0.34%和0.39%;而SO2与O3对房价的影响并不显著。②近年来大气污染的经济损失有所降低,政府的治理效果显著,但仍不容小觑。2013年AQI、PM10和PM2.5未达标导致的经济损失分别约为35600亿元、19300亿元和24100亿元,约占当年GDP的6.06%、3.29%和4.11%;2018年分别降低至19200亿元、5300亿元和6700亿元,占当年GDP的2.14%、0.60%和0.74%。尽管PM10和PM2.5浓度也在逐年下降,但仍未达到《环境空气质量标准》所要求的二级限值。最终评估结果显示,PM10和PM2.5二者导致的经济损失的加总数值,与AQI得到的数值相差无异。进一步证实了我国当前大气污染导致的社会经济福利损失主要是来自PM10和PM2.5的超标,因此治理“雾霾”是改善当前空气质量的关键。  相似文献   
463.
A large vapour cloud explosion (VCE) followed by a fire is one of the most dangerous and high consequence events that can occur in petrochemical facilities. The current process of safety practice in the industry in VCE assessment is to assume that all VCEs are deflagration. This assumption has been considered for nearly three decades. In recent years, major fire and VCE incidents in fuel storage depots gained considerable attention in extreme high explosion overpressure due to the transition from Deflagration to Detonation (DDT). Though the possibility of DDTs is lower than deflagrations, they have been identified in some of the most recent large-scale VCE incidents, including Buncefield (UK), 2005, San Juan explosion (US), 2009, and IOCL Jaipur (India), 2009 event. Such an incident established the need to understand not only VCE but also the importance of avoiding the escalation of minor incidents into much more devastating consequences.Despite decades of research, understanding of the fundamental physical mechanisms and governing factors of deflagration-to detonation transition (DDT) transition remains mostly elusive. An extreme multi-scale, multi-physics nature of this process uncertainly makes DDT one of the “Grand Challenge” problems of typical physics, and any significant developments toward its assured insistence would require revolutionary step forward in experiments, theory, and numerical modelling. Under certain circumstances, nevertheless, it is possible for DDT to occur, and this can be followed by a propagating detonation that quickly consumes the remaining detonable cloud. In a detonable cloud, a detonation creates the worst accident that can happen. Because detonation overpressures are much higher than those in a deflagration and continue through the entire detonable cloud, the damage from a DDT event is more severe. The consideration of detonation in hazard and risk assessment would identify new escalation potentials and recognize critical buildings impacted. This knowledge will allow more effective management of this hazard.The main conclusion from this paper is that detonations did occur in Jaipur accident at least part of the VCE accidents. The vapour cloud explosion could not have been caused by a deflagration alone, given the widespread occurrence of high overpressures and directional indicators in open uncongested areas containing the cloud. Additionally, the major incident has left many safety issues behind, which must be repeatedly addressed. It reveals that adequate safety measures were either underestimated or not accounted for seriously. This article highlights the aftermath of the IOCL Jaipur incident and addresses challenges put forward by it.  相似文献   
464.
The ignition and explosion of combustible vapor clouds represents a significant hazard across a range of industries. In this work, a new set of gas detonations experiments were performed to provide benchmark blast loading data for non-trivial geometry and explosion cases. The experiments were designed to represent two different accident scenarios: one where ignition of the vapor cloud occurs shortly after release and another where ignition is delayed and a fuel concentration gradient is allowed to develop. The experiments focused on hydrogen-air and methane-oxygen detonations in a semiconfined enclosure with TNT equivalencies ranging from 9 g to 1.81 kg. High-rate pressure transducers were used to record the blast loads imparted on the interior walls of a 1.8 m × 1.8 m × 1.8 m test fixture. Measurements included detonation wave velocity, peak overpressure, impulse, and positive phase duration. A comparison of the pressure and impulse measurements with several VCE models is provided. Results show that even for the most simplified experimental configuration, the simplified VCE models fail to provide predictions of the blast loading on the internal walls of the test fixture. It is shown that the confinement geometry of the experiment resulted in multiple blast wave reflections during the initial positive phase duration portion of the blast loading, and thus, significantly larger blast impulse values were measured than those predicted by analytical models. For the pressure sensors that experienced normally-reflect blast waves for the initial blast impulse, the Baker-Strehlow and TNT equivalency models still struggled to accurately capture the peak overpressure and reflected impulse. The TNO multi-energy model, however, performed better for the case of simple normally-reflected blast waves. The results presented here may be used as validation data for future model or simulation development.  相似文献   
465.
为深入评估砖木旧工业厂房改造加固的脆弱性,经过基础理论研究与调研,运用VSD模型(vulnerability scoping diagram)结合该系统4项构成要素,即协同管理、结构特点、施工环境、技术方法,以交叉矩阵形式分析系统脆弱性影响因素。通过SPSS软件进行可靠性检验从而筛选指标,构建以暴露性、敏感性、适应性为核心的评估指标体系。利用熵值法求得指标权重后,结合某砖木结构厂房实例,依据云模型方法建立脆弱性评估模型,运用MATLAB软件计算指标参数,从而量化指标的不确定性。评估结果识别出保护性拆除方案、抗震构件的设置和保护性修复政策3个最脆弱因素及相应控制最有效的3个关键因素,相比灰色关联分析结果更具优越性,为今后旧工业厂房改造加固工程的施工管控提供了借鉴。  相似文献   
466.
Toxic gas-containing flammable gas leak can lead to poisoning accidents as well as explosion accidents once the ignition source appears. Many attempts have been made to evaluate and mitigate the adverse effects of these accidents. All these efforts are instructive and valuable for risk assessment and risk management towards the poisoning effect and explosion effect. However, these analyses assessed the poisoning effect and explosion effect separately, ignoring that these two kinds of hazard effects may happen simultaneously. Accordingly, an integrated methodology is proposed to evaluate the consequences of toxic gas-containing flammable gas leakage and explosion accident, in which a risk-based concept and the grid-based concept are adopted to combine the effects. The approach is applied to a hypothetical accident scenario concerning an H2S-containing natural gas leakage and explosion accident on an offshore platform. The dispersion behavior and accumulation characteristics of released gas as well as the subsequent vapor cloud explosion (VCE) are modeled by Computational Fluid Dynamics (CFD) code Flame Acceleration Simulator (FLACS). This approach is concise and efficient for practical engineering applications. And it helps to develop safety measures and improve the emergency response plan.  相似文献   
467.
With high-speed camera technology, the propagation behavior of explosion flame for the local dust cloud of corn starch in a semi-open vertical pipe under the action of the annular obstacle was studied experimentally, and the blockage rate and the annular obstacle numbers as well as impact of dust cloud concentration on the flame propagation were investigated. The researches showed that both the blockage rate and the annular obstacle numbers have significant effects on the flame speed and propagation process for the dust cloud explosion of corn starch. The increase of the blockage rate of such annular obstacles will cause that the combustion of dust cloud with high concentration is mainly concentrated in the lower part of the pipe. The increase of the annular obstacle numbers will lead to the acceleration of combustion of the dust cloud. With the increase of the blockage rate and the annular obstacle numbers, the maximum flame speed shows a trend of the first increasing and then decreasing, and the phenomenon of accelerated propagation of the flame becomes more and more obvious, however, the distance of continuous acceleration for the flame is gradually decreased and the maximum flame speed is farther from the outlet of the pipe. Under the action of such annular obstacles, the concentration of dust cloud has a significant effect on the flame speed and shape of the dust cloud of the corn starch. The increase of the concentration of the dust cloud will decrease the acceleration effect of such annular obstacles to result in maximum flame speed showing a trend of the first increasing and then decreasing. However, the acceleration distance of the flame is longer, and the maximum flame speed is closer to the outlet of the pipe. The increasing concentration will make the flame speed develop more slowly, the flame color will be darker, and the flame segmentation phenomenon will be more obvious.  相似文献   
468.
Although industrial denotations in semi-open and congested geometries are often neglected by many practitioners during risk assessment, recent studies have shown that industrial detonations might be more common than previously believed. Therefore, from the explosion safety perspective, it becomes imperative to better assess industrial detonation hazards to improve robustness of explosion mitigation design, emergency response procedures, and building siting evaluation. Having that in mind, this study aims to review current empirical vapor cloud explosion models, understand their limitations, and assess their capability to indicate detonation onset for elongated vapor clouds. Six models were evaluated in total: TNO Multi-Energy, Baker-Strehlow-Tang (BST), Congestion Assessment Method (CAM), Quest Model for Estimation of Flame Speed (QMEFS), Primary Explosion Site (PES), and Confinement Specific Correlation (CSC). Model estimations were compared with large-scale test data available in the open literature. The CAM model demonstrated good performance in indicating deflagration-to-detonation transition (DDT) for test conditions experiencing detonation onset without any modification in the methodology. Some suggestions are provided to improve simulation results from PES, BST and QMEFS.  相似文献   
469.
为合理确定液化烃罐区周边建筑物的抗爆设防荷载,有效进行抗爆设计和防护,建立1套系统的抗爆设防荷载定量评估方法。以某液化烃罐区建筑物为例,计算172个爆炸场景,获得4组累积爆炸频率曲线,基于风险控制标准确定抗爆设防荷载。结果表明:爆炸场景发生频率应包括初始泄漏频率、气象概率、泄漏方向概率和延迟爆炸概率;获得的爆炸超压-累积频率曲线是确定抗爆设防荷载的基础,在爆炸超压较低时,与爆炸源中心距离不同的4面墙体的超压累积频率曲线极为接近;随着爆炸超压的继续增大,累积发生频率的差异逐渐明显;液化烃罐区建筑物的抗爆设防荷载应同时满足2个准则,即万年1次的风险可接受准则和风险可接受范围内爆炸超压最大化准则;根据该准则确定的液化烃罐区附近建筑物东墙的爆炸冲击波峰值入射超压为44.6 kPa,正压作用时间为89.3 ms。  相似文献   
470.
选取川南页岩气区块为研究对象,运用过程生命周期评估和投入产出生命周期方法核算页岩气开采生命周期的直接和间接用水量,并与美国Marcellus页岩气区块用水量进行比较。川南区块总直接用水量为22 928 m^3/井,高于Marcellus区块的总直接用水量15 320 m^3/井。从生命周期阶段来看,川南页岩气开采钻井和压裂阶段的直接用水均远大于Marcellus区块。结合水环境管理指标,自然资源禀赋条件主要决定了直接用水量的差异。川南区块总间接用水量为25 098 m^3/井,超过总直接用水量,约为Marcellus区块总间接用水量的3倍。除井场准备阶段外,其余阶段的间接用水量均大于Marcellus区块,间接用水量的差异与钻井和压裂过程的添加剂、能源使用量和全行业用水效率有关。减少川南区块页岩气开发用水量的主要途径包括提高钻井液和压裂液回用率、改善钻井和压裂添加剂使用效率、提高柴油和电力等能源利用效率和全行业用水效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号