We investigated the performance of a 15.3 L capacity anaerobic baffled reactor (ABR) toward the treatment of low-strength domestic wastewater. The start-up period of the ABR was finished within approximately 130 days at a temperature below 25°C. The average CODCr in the effluent was 165 mg·L-1, and the corresponding CODCr removal efficiency of the ABR was 52.3%. During the third stage (from day 130 to day 233) of ABR operation, the average CODCr in the effluent reached 71 mg·L-1, which meets the secondary discharge requirement of the Integrated Wastewater Discharge Standard (GB 18918-2002, China). Moreover, partial microbial separation was observed along the five ABR compartments through scanning electron microscopic images. The geometric mean diameter of bioparticles in the five compartments increased from 0.050 mm to 0.111, 0.107, 0.104, 0.110, and 0.103 mm during the start-up stage. After operation for 179 days, the corresponding diameters further increased to 0.376, 0.225, 0.253, 0.239, and 0.288 mm, respectively. The fractal dimensions of the bioparticles indicated that these particles have smoother surfaces and more compact structures during ABR operation. Morphological analysis of the bioparticle sections demonstrated that the bioparticles have a pore volume of 30%–55%. The highest porosity was observed for the bioparticles in the second ABR compartment, whereas the lowest fractal dimension of bioparticle section was observed in the fifth compartment. 相似文献
Formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans PCDD/F during the combustion process was investigated experimentally in a pilot plant. All important process steps like the burnout of the fuel bed on the grate, the burnout of the flue gas inside the combustion chamber, the heat recovery in a boiler as well as influences of the fuel composition are described in detail.
High concentrations especially of PCDF are formed during the burnout of the fuel bed. The formation reaction is mainly influenced by the fuel composition and the burnout characteristic of the fuel bed. Fuels with low chlorine and low metal content (Cu) result only in negligible concentrations of PCDD/F.
Under stable combustion conditions characterized by an excellent flue gas burnout PCDD/F will almost be completely destroyed already inside the combustion chamber. “Cold strands” of unburned flue gas (high CO concentrations) caused by disturbed combustion conditions will result in high concentrations of PCDD and especially of PCDF in the raw gas.
A second place of PCDD/F formation is the well-known boiler section. Here fly ash deposits containing residual carbon (mainly soot particles) are the source for the formation reaction. Under stationary effective combustion conditions, they are dominant for PCDD/F concentrations in the raw gas over a very long period of time.
Stationary efficient flue gas burnout (especially soot) together with effective boiler cleaning will guaranty low concentrations of PCDD/F in the flue gas in front of the flue gas cleaning system. 相似文献