首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1261篇
  免费   69篇
  国内免费   108篇
安全科学   290篇
废物处理   20篇
环保管理   198篇
综合类   468篇
基础理论   66篇
污染及防治   119篇
评价与监测   221篇
社会与环境   27篇
灾害及防治   29篇
  2024年   3篇
  2023年   21篇
  2022年   16篇
  2021年   43篇
  2020年   41篇
  2019年   34篇
  2018年   30篇
  2017年   40篇
  2016年   58篇
  2015年   71篇
  2014年   75篇
  2013年   84篇
  2012年   73篇
  2011年   74篇
  2010年   47篇
  2009年   55篇
  2008年   58篇
  2007年   67篇
  2006年   57篇
  2005年   56篇
  2004年   50篇
  2003年   44篇
  2002年   35篇
  2001年   35篇
  2000年   43篇
  1999年   30篇
  1998年   39篇
  1997年   28篇
  1996年   17篇
  1995年   16篇
  1994年   17篇
  1993年   16篇
  1992年   6篇
  1991年   7篇
  1990年   4篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1438条查询结果,搜索用时 328 毫秒
171.
城郊排水沟渠溶质传输的暂态存储影响及参数灵敏性   总被引:5,自引:5,他引:0  
选择Na Cl为示踪剂,于2013年9~10月在合肥城郊的关镇河支渠开展5次瞬时投加示踪实验.从暂态存储、侧向补给和对流-扩散等作用机制层面,设置4种模拟情景,解析暂态存储作用对于排水沟渠溶质传输规律的影响,并对OTIS模型参数进行灵敏性分析.结果表明,暂态存储对于主流区Cl-模拟浓度穿透曲线(BTCs)峰值大小影响很大,相对偏差高达24.23%~117.26%,显著高于对峰值出现时间的影响,且暂态存储影响显著超过了侧向补给作用;由相关性分析,主流区Cl-模拟浓度BTCs峰值大小和出现时间的相对偏差与As/A具有极显著相关性;4个主要参数的灵敏度排序为AAsαD.  相似文献   
172.
随着农业氮肥大量施用,大量碳氮营养物质以淋溶或径流形式进入周边灌溉水体,使其成为甲烷(CH4)和氧化亚氮(N2O)的重要排放源.以我国东南部地区典型稻田灌溉河流为研究对象,于2014年9月至2016年9月连续两年原位观测表层水体CH4和N2O溶存浓度及其排放通量,旨在明确稻田灌溉河流CH4和N2O的排放特征、排放强度及其主要驱动因子.结果表明,观测期内c(CH4溶存)的年平均值为(390.57±43.95)nmol·L-1(92.80~1 577.54 nmol·L-1),c(N2O溶存)的年平均值为(40.23±3.20)nmol·L-1(10.05~75.40 nmol·L-1).CH4和N2O的排放通量(年平均)分别为(20.73±6.08)mg·(m2·h)-1和(34.30±7.12)μg·(m2·h)-1.CH4和N2O溶存浓度和排放通量整体上均呈现出春夏排放高,秋冬排放低的季节变化趋势.两年CH4累计排放总量为(3 876.30±1 153.96)kg·hm-2,N2O累计排放总量为(5.74±0.98)kg·hm-2.两者持续性全球增温潜势(SGWP,以CO2-eq计)平均为(87.99±15.73)t·(hm2·a)-1.CH4排放通量与水温、底泥可溶性有机碳(DOC)显著正相关,而与水体溶解氧(DO)显著负相关;N2O排放通量与水温、水中铵态氮(NH4+-N)和硝态氮(NO3--N)显著正相关,而与水体DO显著负相关.该研究可为科学估算我国农业灌溉流域CH4和N2O排放总量提供数据支撑和重要参考.  相似文献   
173.
We assessed the use of anodic stripping voltammetry (ASV) for in-situ determinations of both total concentration and speciation of dissolved heavy metals (Cd, Cu, Pb and Zn) in acid mine drainage (AMD). In the Kwangyang Au–Ag mine area of South Korea, different sites with varying water chemistry within an AMD were studied with a field portable anodic stripping voltammeter. Anodic stripping voltammetry after wet oxidation (acidification) was very sensitive enough to determine total concentration of dissolved Cd because Cd was dominantly present as ‘labile’ species, whilst the technique was not so effective for determining total Cu especially in the downstream sites from the retention pond, due to its complexation with organic matter. For dissolved Pb, the concentrations determined by ASV after wet oxidation generally agreed with those by ICP-AES. In the downstream samples (pH>5), however, ASV data after wet oxidation were lower than ICP-AES data because a significant fraction of dissolved Pb was present in those samples as ‘inert’ species associated with colloidal iron oxide particles. The determination of total dissolved Zn by ASV after wet oxidation appeared to be unsatisfactory for the samples with high Cu content, possibly due to the interference by the formation of Zn–Cu intermetallic compounds on the mercury coated electrode. In AMD samples with high dissolved iron, use of ultraviolet irradiation was not effective for determining total concentrations because humate destruction by UV irradiation possibly resulted in the removal of a part of dissolved heavy metals from waters through the precipitation of iron hydroxides.  相似文献   
174.
Luan TG  Yu KS  Zhong Y  Zhou HW  Lan CY  Tam NF 《Chemosphere》2006,65(11):2289-2296
The PAH metabolites produced during degradation of fluorene, phenanthrene and pyrene by a bacterial consortium enriched from mangrove sediments were analyzed using the on-fiber silylation solid-phase microextraction (SPME) combining with gas chromatography–mass spectrometry (GC–MS) method. Seventeen metabolites at trace levels were identified in different PAH degradation cultures based on the full scan mass spectra. In fluorene degradation cultures, 1-, 2-, 3- and 9-hydroxyfluorene, fluorenone, and phthalic acid were detected. In phenanthrene and pyrene degradation cultures, various common metabolites such as phenanthrene and pyrene dihydrodiols, mono-hydroxy phenanthrene, dihydroxy pyrene, lactone and 4-hydroxyphenanthrene, methyl ester, and phthalic acid were found. The detection of various common and novel metabolites demonstrates that SPME combining with GC–MS is a quick and convenient method for identification as well as monitoring the real time changes of metabolite concentrations throughout the degradation processes. The knowledge of PAH metabolic pathways and kinetics within indigenous bacterial consortium enriched from mangrove sediments contributes to enhance the bioremediation efficiency of PAH in real environment.  相似文献   
175.
Background, Aims and Scope The acidification of mine waters is generally caused by metal sulfide oxidation, related to mining activities. These waters are characterized by low pH and high acidity due to strong buffering systems. The standard acidity parameter, the Base Neutralization Capacity (BNC) is determined by endpoint titration, and reflects a cumulative parameter of both hydrogen ions and all buffering systems, but does not give information on the individual buffer systems. We demonstrate that a detailed interpretation of titration curves can provide information about the strength of the buffering systems. The buffering systems are of importance for environmental studies and treatment of acidic mining waters. Methods Titrations were carried out by means of an automatic titrator using acidic mining waters from Germany and Canada. The curves were interpreted, compared with each other, to endpoint titration results and to elemental concentrations contained therein. Results and Discussion The titration curves were highly reproducible, and contained information about the strength of the buffer systems present. Interpretations are given, and the classification and comparison of acidic mining waters, by the nature and strength of their buffering systems derived from titration curves are discussed. The BNC-values calculated from the curves were more precise than the ones determined by the standard endpoint titration method. Due to the complex buffer mechanisms in acidic mining waters, the calculation of major metal concentrations from the shape of the titration curve resulted in estimates, which should not be confused with precise elemental analysis results. Conclusion Titration curves provide an inexpensive, valuable and versatile tool, by which to obtain sophisticated information of the acidity in acidic water. The information about the strength of the present buffer systems can help to understand and document the complex nature of acidic mining water buffer systems. Finally, the interpretation of titration curves could help to improve treatment measurements and the ecological understanding of these acidic waters.  相似文献   
176.
Influence of super-absorbent polymer on the growth rate of gas hydrate   总被引:1,自引:0,他引:1  
The growth rate of hydrate and morphology of methane hydrate formation were studied in a visual pressure cell at 5.5 MPa. The gas hydrate formation was carried out (coal mine methane (CMM) + tetrahydrofuran (THF) + sodium dodecyl sulphate (SDS) + H2O) with and without SAP. Experimental data on the hydrate growth rate and induction time were obtained for three different CMM samples. The influence of SAP on hydrate growth rate was determined. Results showed that after the addition of SAP, with the methane concentration increased in CMM, the induction time was reduced by 9 min, 10 min and 3 min, and the growth rate was shortened by 0.56 × 10−6/m3 min−1, 0.53 × 10−6/m3 min−1 and 1.42 × 10−6/m3 min−1, respectively. This study could be useful for the recovery of methane from CMM by forming hydrate in the chemical and mining industry.  相似文献   
177.
By using the self-developed triaxial servo-controlled seepage equipment for thermo-fluid-solid coupling of coal containing gas and the self-developed coal and gas outburst simulation test device, experiments to study the influence mechanism of gas seepage on coal and gas outburst disasters. The results show that: (i) gas seepage decreases the strength of coal containing gas and accelerates its failure process; (ii) under the same gas pressure, the confining pressure is larger, the more difficult the gas flows and the greater the intensity of coal containing gas is; (iii) in the process of coal and gas outburst, the greater the vertical ground stress is, the more powerful the outburst will be; (iv) the influence mechanism of gas seepage on coal and gas outburst disasters is as follows: firstly, gas seepage weakens the mechanical properties of coal body, which makes it much easier for coal and gas outburst to occur; secondly, on the same effect of external force, it will be easy to form a high gas pressure zone in the coal body under the difficult condition of gas seepage, and accumulate more gas compression energy, which is the energy source for coal and gas outburst, and it is also the main dynamic source to throw and grind the coal.  相似文献   
178.
The coupling of gas explosion flame and shock wave is analyzed. In the gas explosion process, shock wave is affected by the flame directly, and shock wave also induces the flame. Inhibiting explosion can be achieved by the interference between the flame and shock wave propagation. If the coupling effects can be damaged, the adverse effects caused by the explosion should be mitigated and controlled. According to the structure characteristics of foam ceramics, the coupling effects mechanism of ceramic foam on gas explosion flame and shock wave is researched. When the explosion goes through the structure of foam ceramics, the flame can be quenched and the shock wave be attenuated. After the flame is quenched, the supply of precursor shock wave energy is cut off. Due to lack of energy supply, the destructive effects of blast wave will be reduced effectively. Coupling effects of the flame and shock wave can be damaged by the special structure of foam ceramics. Studies suggest that a certain function to represent the structure characteristics of foam ceramics must exist. For a certain material of foam ceramics, the sure porosity δ and the pore diameter d also can be get, which is the key to research and develop foam ceramic suppression technology of gas explosion.  相似文献   
179.
9%镍钢液化天然气储罐制造安装过程中,焊缝检验通常用常规射线照相(RT)进行。本文研讨用相控阵半自动超声检测(AUT)取代射线照相的工艺制定及验证方法。要领分四步:首先带缺陷专用焊接试样的制备;然后相控阵AUT工艺的编制;其次在有已知缺陷的焊接试样上,对AUTT艺作“开放性”验证试验;最后在现场对整个数据采集系统作“封闭性”操作演示和验证评定试验。验证结果表明相控阵AUT取代RT可行可靠,能凸显AUT种种优势。  相似文献   
180.
In order to study the influence of vacuum degree on gas explosion suppression by vacuum chamber, this study used the 0.2 mm thick polytetrafluoroethylene film as the diaphragm of vacuum chamber to carry out a series of experiments of gas explosion suppression by vacuum chamber with the vacuum degree from −0.01 MPa to −0.08 MPa. The experimental results show that: under the condition of any vacuum degree, vacuum chamber can effectively suppress the explosion flame and overpressure; as vacuum degree changes, the effect of gas explosion suppression using vacuum chamber is slightly different. Vacuum chamber has obvious influence on propagation characteristics of the explosion flame. After explosion flame passes by vacuum chamber, the flame signal weakens, the flame thickness becomes thicker, and the flame speed slows down. With the increase of the vacuum degree of vacuum chamber, the flame speed can be prevented from rising early by vacuum chamber. The higher the vacuum degree is, the more obviously the vacuum chamber attenuates the explosion overpressure, the smaller the average overpressure is, and the better effect of the gas explosion suppression is. Vacuum chamber can effectively weaken the explosion impulse under each vacuum degree. From the beginning of −0.01 MPa, the vacuum chamber can gradually weaken explosion impulse as the vacuum degree increases, and the effect of gas explosion suppression gradually becomes better. When the vacuum degree is greater than −0.04 MPa, the increase of vacuum degree can make the explosion overpressure decrease but have little influence on the explosion impulse. Therefore, the vacuum chamber has the preferable suppression effect with equal to or greater than −0.04 MPa vacuum degree.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号