首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1939篇
  免费   193篇
  国内免费   47篇
安全科学   1166篇
废物处理   32篇
环保管理   83篇
综合类   453篇
基础理论   34篇
污染及防治   99篇
评价与监测   209篇
社会与环境   10篇
灾害及防治   93篇
  2024年   4篇
  2023年   50篇
  2022年   36篇
  2021年   118篇
  2020年   112篇
  2019年   79篇
  2018年   32篇
  2017年   67篇
  2016年   86篇
  2015年   116篇
  2014年   107篇
  2013年   98篇
  2012年   117篇
  2011年   132篇
  2010年   77篇
  2009年   95篇
  2008年   88篇
  2007年   152篇
  2006年   86篇
  2005年   80篇
  2004年   70篇
  2003年   54篇
  2002年   46篇
  2001年   46篇
  2000年   41篇
  1999年   36篇
  1998年   40篇
  1997年   25篇
  1996年   21篇
  1995年   19篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2179条查询结果,搜索用时 15 毫秒
991.
The theory of stationary adiabatic and non-adiabatic ignition waves in magnesium aerosuspension is developed on the basis of the mathematical model based on two-velocity two-temperature approach of mechanics of heterogeneous media. Specifically, the conditions such that the particle cloud ignites under the action of an initiating shock wave (SW) are defined. An agreement between the adiabatic one-velocity model and the adiabatic two-velocity model on the ignition delay time for small particles is shown. Influence of particle size on this characteristic is compared for both models. Validation of the two-velocity model is performed on the basis of comparison with the experimental data. The unified formula for calculation of the induction period of the magnesium particle mixture in oxygen which takes into account its dependence on the SW Mach number and particle radius is found.  相似文献   
992.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   
993.
The gas pipeline network is an essential infrastructure for a smart city. It provides a much-needed energy source; however, it poses a significant risk to the community. Effective risk management assists in maintaining the operational safety of the network. The risk management of the network requires reliable dynamic failure probability analysis. This paper proposes a methodology of condition monitoring and dynamic failure probability analysis of urban gas pipeline network. The methodology begins with identifying key design and operational factors responsible for pipeline failure. Subsequently, a causation-based failure model is developed as the Bowtie model. The Bowtie model is transformed into a Bayesian network, which is analyzed using operational data. The key contributory factors of accident causation are monitored. The monitored data is used to analyze the updated failure probability of the network. The gas pipeline network's dynamic failure probability is combined with the potential consequences to assess the risk. The application of the approach is demonstrated in a section of the urban gas pipeline.  相似文献   
994.
The 2017 Ahmedpur Sharqia oil tanker explosion and fire, costing 219 lives, is one of the biggest ever road transportation disasters in history. This paper presents a detailed investigation and analysis of the accident circumstances and the series of events that contributed to the calamity. The investigation follows a holistic approach that examines the whole system including driver management, vehicle design, road design, and police management of the spillage scene.The analysis shows that although the first cause was driver dozing off behind the wheel, it was a complete system failure which created a domino effect. If all safety systems were in place, there would have not been any serious consequences of that first error. The investigation revealed that there were serious lapses in the design and fabrication of the vessel and truck in violation of UN-ADR safety standards and Pakistan's OGRA-RT standards andno proper protocols or SOPs were followed for driver workload and shift management by Shell Pakistan Ltd. and its contractors. Mismanagement of the post crash scenario by local law enforcement agencies was also a major serial failure. The study provides crucial lessons on the domino nature of such disasters.  相似文献   
995.
The interaction of unburnt gas flow induced in an explosion with an obstacle results in the production of turbulence downstream of the obstacle and the acceleration of the flame when it reaches this turbulence. Currently, there are inadequate experimental measurements of these turbulent flows in gas explosions due to transient nature of explosion flows and the connected harsh conditions. Hence, majority of measurements of turbulent properties downstream of obstacles are done using steady-state flows rather than transient flows. Consequently, an empirical based correlation to predict distance to maximum intensity of turbulence downstream of an obstacle in an explosion-induced flow using the available steady state experiments was developed in this study. The correlation would serve as a prerequisite for determining an optimum spacing between obstacles thereby determining worst case gas explosions overpressure and flame speeds. Using a limited experimental work on systematic study of obstacle spacing, the correlation was validated against 13 different test conditions. A ratio of the optimum spacing from the experiment, xexp to the predicted optimum spacing, xpred for all the tests was between 2-4. This shows that a factor of three higher than the xpred would be required to produce optimum obstacle spacing that will lead to maximum explosion severity. In planning the layout of new installations, it is appropriate to identify the relevant worst case obstacle separation in order to avoid it. In assessing the risk to existing installations and taking appropriate mitigation measures it is important to evaluate such risk on the basis of a clear understanding of the effects of separation distance and congestion. It is therefore suggested that the various new correlations obtained from this work be subjected to further rigorous validation from relevant experimental data prior to been applied as design tools.  相似文献   
996.
化学品事故应急响应中危害距离的确定   总被引:2,自引:0,他引:2  
介绍了不同国家、机构确定的毒性物质、易燃易爆物质紧急暴露限值和化学品事故中危害距离的确定方法,并以液氯钢瓶泄漏事故说明毒性危害距离的确定,以天然气管线泄漏火灾、爆炸事故说明火灾爆炸事故危害距离的确定。  相似文献   
997.
该试验通过测定爆炸下限与返回火焰长度这两个参数来确定4种煤粉的爆炸性。爆炸下限指能使喷入一定装置中的粉尘云点燃并维持火焰传播的最小粉尘浓度,是确定粉尘爆炸性重要参数,试验室通常使用20L的爆炸装置进行测定。喷吹现场广泛采用长管式煤粉爆炸性测试仪检测煤尘引燃后产生的返回火焰长度,该长度随煤粉爆炸性的强弱而显著变化:返回火焰长度大于600 mm可认定该煤粉具有强爆炸性;在400~600 mm之间则煤粉具有中强度爆炸性;小于400 mm则煤粉具有弱爆炸性。结果表明:20 L球测得4种煤粉的爆炸下限在60~85 g/m3之间;长管式煤粉爆炸性测定仪测得4种煤粉的返回火焰长度在20~50 mm之间。由测定的返回火焰长度可知,试验所用的4种煤样均属于弱爆炸性煤种。  相似文献   
998.
为了探求一氧化碳与水蒸汽参与瓦斯爆炸的化学反应动力学过程的阻尼效应,建立了受限空间中瓦斯爆炸反应的数学模型。数值计算结果表明,结果表明在瓦斯爆炸过程中,瓦斯-空气混合气体含有10%的一氧化碳,虽然会延迟瓦斯爆炸时间,抑制瓦斯爆炸,但是H、O自由基浓度、瓦斯爆炸温度和压力比不加入一氧化碳时升高,同时对CO2、NO的生成起促进作用;当混合气体中含有10%的水蒸汽时,H、O自由基浓度降低,瓦斯爆炸温度和压力也随之降低,致灾性气体CO2、NO的生成得到抑制。虽然一氧化碳对瓦斯爆炸有一定的阻尼效应,但是由于一氧化碳对部分致灾性气体的生成有促进作用,因此,在阻尼瓦斯爆炸方面,水蒸汽的效果要好于一氧化碳。  相似文献   
999.
为了研究机场周边大气中非甲烷烃的污染情况,于2011年4月21日起连续5天对某机场起降点附近2个采样点以及对照点农田区的大气中NMHCs进行测定.结果表明,NMHCs的含量为飞机开始滑行点(3.22mg/m3)>降落点(2.92mg/m3)>农田区(2.91 mg/m3),均超出以色列的标准(2.0mg/m3).非甲烷总烃在一天中下午16点达到最小值.飞机的起降对周边大气NMHCs排放有一定的影响.而对照点农田排放可能是当地NMHCs排放的重要来源. 3个采样点中,排放的碳氢化合物以非甲烷烃为主,占总烃的63.4%.NMHCs和总烃的线性关系良好,用统计回归的方法得到了研究区总烃和非甲烷烃的换算公式.  相似文献   
1000.
Explosion behaviors of typical light metal and carbonaceous dusts induced by different ignition energies were investigated based on systematic experiments in a Siwek 20 L vessel. Comparative analysis reveals that the explosion mechanism of carbonaceous dust is the volatile combustion, whereas the mechanism for light metal dust mainly features the surface heterogeneous oxidation. Influences of ignition energy on severity and flammability limit are much more significant for carbonaceous dust than light metal, especially for the powder with less volatile. An innovative approach was introduced to derive flame thickness from the pressure–time trace. The relation between explosion induction time and combustion duration of ignitor was also analyzed. Results show inappropriate ignition energy will cause under-/over-driving in the thermodynamic/kinetic characteristic measurements. In this way, a dimensionless parameter pressure ratio was introduced to evaluate the under-driving, while two methods by using flame thickness and induction time respectively, were proposed to evaluate over-driving. To improve the accuracy of dust explosion tests, authors advocate that explosion severity determination should be conducted at the critical ignition energy. Moreover, a comparison between the European and Chinese flammability limit determination procedures was also conducted, indicating that EN 14034-3 is suitable for light metal but not for carbonaceous, while GB/T 16425 appears to be slightly conservative for both carbonaceous and light metal dusts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号