首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   16篇
  国内免费   21篇
安全科学   262篇
废物处理   13篇
环保管理   40篇
综合类   202篇
基础理论   17篇
污染及防治   82篇
评价与监测   198篇
社会与环境   3篇
灾害及防治   7篇
  2024年   2篇
  2023年   21篇
  2022年   5篇
  2021年   33篇
  2020年   26篇
  2019年   24篇
  2018年   10篇
  2017年   19篇
  2016年   38篇
  2015年   50篇
  2014年   52篇
  2013年   58篇
  2012年   38篇
  2011年   42篇
  2010年   21篇
  2009年   29篇
  2008年   36篇
  2007年   47篇
  2006年   23篇
  2005年   26篇
  2004年   28篇
  2003年   25篇
  2002年   16篇
  2001年   15篇
  2000年   24篇
  1999年   20篇
  1998年   25篇
  1997年   18篇
  1996年   11篇
  1995年   13篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1987年   2篇
  1986年   1篇
排序方式: 共有824条查询结果,搜索用时 15 毫秒
821.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   
822.
Gas leakage is a matter of concern for several industries such as oil and gas, mining, food, and healthcare. When the industry considers gas detectors, the main questions are: How many gas detectors are required? Where is the best location to install them? To answer these questions Computational Fluid Dynamics (CFD) simulations and optimisation procedures are employed to calculate the plume location and plume volume to better position the gas detectors. We investigated how the optimisation cell size for the set covering problem can be calculated based on a given explosion overpressure threshold. Resorted by the multi-energy explosion model, we calculate the flammable cloud volume associated with a pre-defined overpressure value. The cloud volume is applied in the solution of the set covering problem and an optimal set for the gas detectors is obtained. The final gas detector network (number and location of the devices) is validated against CFD simulations for small releases. The results provide evidence that the optimal gas detector networks is able to detect gas leaks within a feasible time.  相似文献   
823.
The risk assessment of combustible explosive dust is based on the determination of the probability of dust dispersion, the identification of potential ignition sources and the evaluation of explosion severity. It is achieved in most of cases with the two main experimental normalized devices such as the Hartmann tube (spark ignition) and the 20 L spherical bomb (with two 5 kJ pyrotechnic ignitors).Ignition energy of the 5 kJ ignitor is well calibrated and generates a reproducible ignition. But, on the other hand, this ignition is not punctual and the over pressure produced is nearly 2 bar. Moreover, the pyrotechnic igniter accelerates the combustion with multi ignition points in a large volume and that disturbs the flame propagation. In this way, this ignition source does not allow to analyze the combustion products because the composition of the pyrotechnic igniter was found in the combustion products.This paper deals with the comparison of two ignition sources in the 20 L spherical bomb. Different explosive dusts of great industrial interest are studied with electrical and pyrotechnic ignitors, in order to understand, first, the influence of each type of igniter on the explosion behaviour and then to evaluate the possibility of establishing a correspondence between parameters obtained with these two ignition sources.Severity parameters of nicotinic acid, aluminium powder and titanium alloy were measured by using the two types of ignition system in our 20 L spherical bomb equipped with the Kühner dihedral injector. The explosion overpressure P and the rate of pressure rise (dPdt) were measured in a large range of concentration allowing to propose correlations between electrical and pyrotechnic ignition for each parameter and each type of powder. These correlations aim to link the tests used with two different collections of experimental parameters for the same dust. The relevance of these correlations will be discussed.  相似文献   
824.
In this paper, a parametric study has been carried out to predict the exit velocity of air through the leakage in the pipe with the help of CFD software ANSYS Fluent. The effect of air pressure in the pipe and the shape of leakage have been studied. Further experiments were also carried out to determine the exit velocity for the defined shape of leakage by varying the air pressure in the pipe. Experimentally, the velocity at a distance of 8 cm from the location of a leak in the horizontal plane was obtained with the help of differential pressure transducers. Using the experimental results, the computational results were validated. The results of the parametric simulation study showed that even for a pressure of 2 bars the velocity profile at the leak location indicates the supersonic state where the Mach number is greater than 1. The study is useful because it may be used as a foundation for risk assessment and safety management in the case of flammable gas leaks through gas pipes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号