首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1161篇
  免费   148篇
  国内免费   28篇
安全科学   556篇
废物处理   13篇
环保管理   79篇
综合类   353篇
基础理论   19篇
环境理论   2篇
污染及防治   84篇
评价与监测   202篇
社会与环境   5篇
灾害及防治   24篇
  2024年   2篇
  2023年   34篇
  2022年   31篇
  2021年   67篇
  2020年   63篇
  2019年   65篇
  2018年   29篇
  2017年   50篇
  2016年   75篇
  2015年   75篇
  2014年   70篇
  2013年   66篇
  2012年   87篇
  2011年   74篇
  2010年   47篇
  2009年   57篇
  2008年   58篇
  2007年   67篇
  2006年   41篇
  2005年   39篇
  2004年   34篇
  2003年   30篇
  2002年   18篇
  2001年   18篇
  2000年   22篇
  1999年   22篇
  1998年   25篇
  1997年   19篇
  1996年   13篇
  1995年   13篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有1337条查询结果,搜索用时 171 毫秒
121.
针对影响油气管道安全运营的落石冲击问题,基于弹塑性力学、Cowper-Symonds本构模型和有限元方法,建立了球形落石冲击油气管道的计算模型,对管道动态响应过程进行了数值模拟。对冲击速度、落石半径、管道内压力和落石冲击位置进行了参数敏感性分析,研究了各参数对管道冲击变形的影响规律。结果表明:落石的冲击能量主要用于管道塑性变形;冲击过程中,落石与管道的接触区域由初始的椭圆斑逐渐变成了椭圆环;管道塑性变形随着冲击速度和落石半径的增大而增大,随内压和落石偏移度的增大而减小。该研究工作为油气管道的安全评价及防护工程的设计提供了参考依据,对保障油气安全运输具有重要的工程意义。  相似文献   
122.
为研究地表载荷对硬岩区埋地管道力学性能的影响,建立了管-土耦合三维数值模型,分析了地表载荷大小、作用面积、管道压力、管道径厚比及回填土弹性模量对管道应力分布、塑性应变、椭圆度的影响。结果表明:地表压载作用下,高应力区首先出现在管道顶部且呈椭圆形;随着地表载荷及其作用面积的增大,管道高应力区逐渐扩大,管道截面左右两侧也出现应力集中;随着回填土弹性模量、管道壁厚及内压的增加,管道顶部高应力区及最大等效应力均减小。塑性应变首先出现在管顶,且塑性区随地表载荷、载荷作用长度增加而增大,随回填土体弹性模量及管道壁厚增大而逐渐减小;当内压为0~4MPa时,管道塑性应变及塑性区随内压的增大而减小。管道椭圆度随回填土体弹性模量、管道内压、壁厚增加而逐渐减小,随地表压载增大而增大。  相似文献   
123.
Tank discharge gas/vapor flow problems are frequently encountered in both practice and design. To perform this type of design calculation, the first step is to identify whether the flow is choked or not through a trial-and-error solution of an equation for adiabatic flow with friction from a reservoir through a pipe. Developing a direct method without any trial-and-error to identify a choking condition would be helpful for expediting the flow calculations. This paper presents an easy and quick method to identify the choking of gas flow for an emergency relief system consisting of a rupture disk and vent piping. This greatly simplifies the design calculations. The proposed method for validating the venting adequacy of existing ERS circumvents the iteration calculation and the use of Lapple charts. Three case studies for the design of vent piping for rupture disks support the proposed method.  相似文献   
124.
In many practical situations, a flame may propagate along a pipe, accelerate and perhaps transform into a devastating detonation. This phenomenology has been known, more or less qualitatively, for a long time and mitigation techniques were proposed to try and avoid this occurrence (flame arresters, vents,...). A number of parameters need to be known and in particular the “distance to detonation” and more generally the flame acceleration characteristic scales. Very often, the ratio between the detonation run-up distance and the pipe diameter is used without any strong justification other that using a non-dimensional parameter (L/D). In this paper, novel experimental evidence is presented on the basis of relatively large scale experiments using 10 cm and 25 cm inner diameter duct with a length between 7 and 40 m. Homogeneous C2H4-air, CH4-air, C3H8-air and H2-air mixtures were used and different ignition sources. The interpretation suggests that the self-acceleration mechanism of the flame may be much better represented by flame instabilities than by turbulence build-up. One consequence would be that the maximum flame velocity and, following, the maximum explosion overpressure, would be rather linked with the run-up distance than with the L/D ratio.  相似文献   
125.
《环境工程》2015,33(1)
针对注烟道气稠油热采中管道输送烟道气酸凝结问题,以连续性方程、能量方程和动量方程为基础建立了烟道气沿管道流动与传热计算模型,计算了烟道气沿管道的压力分布、温度分布和酸凝结点距离,分析了不同入口参数和烟道气成分对管道中烟道气的压力、温度、酸凝结点的影响。结果表明:SO3或水蒸汽含量增加时,烟道气酸凝结点温度提高,凝结点距离减小;入口烟道气压力提高,烟道气压降变小,温降不变,酸凝结点距离减小;入口烟温升高,压降和温降都增大,酸凝结点距离增大;保温层厚度增加,温降减小,酸凝结点距离增大。计算和分析结果表明:减少烟道气中SO3或水蒸汽含量可以有效地增大酸凝结点距离,减轻管道腐蚀问题。  相似文献   
126.
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al. (2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination (R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1, 2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area (%) in comparison with the averaged relative peak area of each method at 0 day. The indices of the bottle full of water method were the lowest (99.5%-108.5%) compared to the indices of vacuum bag and vacuum vial methods (119%-217%). Meanwhile, the gas chromatograph determination of other gas components (O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.  相似文献   
127.
建立了鱼体中共平面多氯联苯(co-PCBs)和指示性多氯联苯(indicator PCBs)残留量的快速溶剂萃取气相色谱质谱分析方法.结果表明,18种多氯联苯在20 μg/L~500 μg/L范围内线性良好(r>0.998),方法的检出限为0.2 ng/kg~0.5 ng/kg.当添加浓度为100 ng/kg时,多氯联苯的回收率为70.2%~113.5%.该方法前处理简便快速,准确性高,满足鱼体痕量多氯联苯残留的分析要求.  相似文献   
128.
Natural gas pipeline construction is developing rapidly worldwide to meet the needs of international and domestic energy transportation. Meanwhile, leakage accidents occur to natural gas pipelines frequently due to mechanical failure, personal operation errors, etc., and induce huge economic property loss, environmental damages, and even casualties. However, few models have been developed to describe the evolution process of natural gas pipeline leakage accidents (NGPLA) and assess their corresponding consequences and influencing factors quantitatively. Therefore, this study aims to propose a comprehensive risk analysis model, named EDIB (ET-DEMATEL-ISM-BN) model, which can be employed to analyze the accident evolution process of NGPLA and conduct probabilistic risk assessments of NGPLA with the consideration of multiple influencing factors. In the proposed integrated model, event tree analysis (ET) is employed to analyze the evolution process of NGPLA before the influencing factors of accident evolution can be identified with the help of accident reports. Then, the combination of DEMATEL (Decision-making Trial and Evaluation Laboratory) and ISM (Interpretative Structural Modeling) is used to determine the relationship among accident evolution events of NGPLA and obtain a hierarchical network, which can be employed to support the construction of a Bayesian network (BN) model. The prior conditional probabilities of the BN model were determined based on the data analysis of 773 accident reports or expert judgment with the help of the Dempster-Shafer evidence theory. Finally, the developed BN model was used to conduct accident evolution scenario analysis and influencing factor sensitivity analysis with respect to secondary accidents (fire, vapor cloud explosion, and asphyxia or poisoning). The results show that ignition is the most critical influencing factor leading to secondary accidents. The occurrence time and occurrence location of NGPLA mainly affect the efficiency of emergency response and further influence the accident consequence. Meanwhile, the weight ranking of economic loss, environmental influence, and casualties on social influence is determined with respect to NGPLAs.  相似文献   
129.
Toxic gas leakage in a tank area can have catastrophic consequences. Storage tank leakage location (particularly for high leakage) and downwind storage tanks potentially influence gas diffusion in tank areas. In this study, we developed a numerical and experimental method to investigate the impact of a high leakage location and downwind storage tank on gas diffusion based on three (1.05H, 0.90H, and 0.77H, H was the tank height, 22m) leakage field experiments on the leeward side of storage tank, which have been not conducted before. The experiments revealed an unexpected phenomenon: the maximum ground concentration first decreased and then increased with increasing leakage height. The simulations illustrated that the differences in micrometeorological conditions caused the maximum ground concentration of gas emitted from the roof to be higher than that emitted from the tank wall near the storage tank height. The downwind storage tank 1) had little influence on the entire diffusion direction but altered the local diffusion pattern; 2) reduced the maximum ground concentration (∼18.7%) and the distance from the emission source (approximately a storage tank diameter); and 3) had strong influences on the concentration, velocity, turbulence, and pressure on the leeward side. The concentration negatively correlated with the velocity, pressure, and turbulence in the middle of the two storage tanks on wind centerline. Our results can improve understanding of gas dispersion in tank areas and provide references for mitigating loss and protecting lives during emergency response processes.  相似文献   
130.
In order to address the risk of combustible gas explosions in sewage culverts, a numerical model was established using ANSYS/LS-DYNA software. The model consisted of a culvert and a cover plate, and was used to study the effect of cover plate thickness (ranging from 0.08 m to 0.12 m) on the dynamic response and damage of the structure under explosive loads. The results indicated that, during the loading negative pressure stage, the equivalent stress peak value of the central monitoring unit of the cover plate first increased and then decreased with increasing cover plate thickness. Additionally, the maximum principal stress peak value first decreased and then increased, while the maximum shear stress peak value first increased and then decreased. During the loading positive pressure stage, the maximum principal strain peak value of the monitoring unit decreased overall with increasing cover plate thickness. However, the equivalent plastic strain peak value initially increased and then decreased gradually. The equivalent strain indicated that plastic damage occurred in the cover plate. Beyond a thickness of 0.11 m, increasing the cover thickness did not appear to enhance its resistance to plastic damage. The damage analysis revealed that as cover plate thickness increased, the peak displacement and velocity of the monitoring unit continued to decrease, while the overall stability and explosive resistance of the cover plate increased. Additionally, the number of damaged fragments decreased. However, once the cover plate thickness reached 0.11 m, the bonding performance of the reinforced concrete structure had been fully developed, increasing the thickness of the cover plate no longer had a significant impact on the explosive resistance of the cover plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号