首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   5篇
  国内免费   9篇
安全科学   9篇
废物处理   4篇
环保管理   53篇
综合类   74篇
基础理论   45篇
环境理论   3篇
污染及防治   38篇
评价与监测   6篇
社会与环境   35篇
灾害及防治   10篇
  2023年   3篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   8篇
  2015年   9篇
  2014年   4篇
  2013年   16篇
  2012年   13篇
  2011年   29篇
  2010年   16篇
  2009年   34篇
  2008年   27篇
  2007年   14篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   9篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有277条查询结果,搜索用时 31 毫秒
211.
Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management practices, using principles of ecological intensification to enhance efficient and effective nutrient uptake while achieving high yields, was identified as a principal way to achieve reductions in GHG emissions while meeting production demands. Many studies identified through the review involved measurements of GHG emissions over several weeks to a few months, which greatly limit the ability to accurately determine system-level management effects on net global warming potential. The current science indicates: (1) appropriate fertilizer N use helps increase biomass production necessary to help restore and maintain soil organic carbon (SOC) levels; (2) best management practices (BMPs) for fertilizer N play a large role in minimizing residual soil nitrate, which helps lower the risk of increased nitrous oxide (N2O) emissions; (3) tillage practices that reduce soil disturbance and maintain crop residue on the soil surface can increase SOC levels, but usually only if crop productivity is maintained or increased; (4) differences among fertilizer N sources in N2O emissions depend on site- and weather-specific conditions; and (5) intensive crop management systems do not necessarily increase GHG emissions per unit of crop or food production; they can help spare natural areas from conversion to cropland and allow conversion of selected lands to forests for GHG mitigation, while supplying the world's need for food, fiber, and biofuel. Transfer of the information to fertilizer dealers, crop advisers, farmers, and agricultural and environmental authorities should lead to increased implementation of fertilizer BMPs, and help to reduce confusion over the role of fertilizer N on cropping system emissions of GHGs. Gaps in scientific understanding were identified and will require the collaborative attention of agronomists, soil scientists, ecologists, and environmental authorities in serving the immediate and long-term interests of the human population.  相似文献   
212.
We model coral community response to bleaching and mass mortality events which are predicted to increase in frequency with climate change. The model was parameterized for the Arabian/Persian Gulf, but is generally applicable. We assume three species groups (Acropora, faviids, and Porites) in two life-stages each where the juveniles are in competition but the adults can enter a size-refuge in which they cannot be competitively displaced. An aggressive group (Acropora species) dominates at equilibrium, which is not reached due to mass mortality events that primarily disadvantage this group (compensatory mortality, >90% versus 25% in faviids and Porites) roughly every 15 years. Population parameters (N individuals, carrying capacity) were calculated from satellite imagery and in situ transects, vital rates (fecundity, mortality, and survival) were derived from the model, field observations, and literature. It is shown that populations and unaltered community structure can persist despite repeated 90% mortality, given sufficiently high fecundity of the remaining population or import from connected populations. The frequency of disturbance determines the dominant group—in low frequency Acropora, in high frequency Porites. This is congruent with field observations. The model of an isolated population was more sensitive to parameter changes than that of connected populations. Highest sensitivity was to mortality rate and recruitment rate. Community composition was sensitive to spacing of disturbances and level of catastrophic mortality. Decreased mortality led to Acropora dominance, increased mortality led to Acropora extinction. In nature, closely spaced disturbances have severely disadvantaged Acropora populations over the last decade. Unless a longer (>10 years) disturbance-free interval can be maintained, a permanent shift away from Acropora dominance will be observed. A mortality rate of 99% in Acropora, as observed in 1996, is not sustainable if repetitive and neither is a disturbance frequency <15 years—each leading to population collapse. This shows that the severity and/or the spacing of the 1996–1998–2002 disturbances were unusual in frequency and duration.  相似文献   
213.
Comprehensive biodiversity assessments play an essential role in strengthening global and national conservation strategies. The recently announced first U.S. National Nature Assessment (NNA) provides an unparalleled opportunity to comprehensively review status and trends of biodiversity at all levels. This broad context can help in the coordination of actions to conserve individual species and ecosystems. The scientific assessments that informed the Kunming–Montreal Global Biodiversity Framework adopted at the 2022 Convention on Biological Diversity (CBD) conference of parties provide models for synthesizing information on trends at multiple levels of biodiversity, including decline in abundance and distribution of species, loss of populations and genetic diversity, and degradation and loss of ecosystems and their services. The assessments then relate these trends to data on drivers of biodiversity loss and pathways to their mitigation. The U.S. NNA can augment such global analyses and avoid the pitfalls encountered by previous U.S. efforts by ensuring policy-relevant design, data accessibility, and inclusivity in process and product and by incorporating spatial data relevant to national and subnational audiences. Although the United States is not formally a CBD party, an effective NNA should take full advantage of the global context by including indicators adopted at the 2022 meeting and incorporating an independent review mechanism that supports periodic stocktaking and ratcheting up of ambition in response to identified shortfalls in stemming biodiversity loss. The challenges to design of an effective U.S. assessment are relevant globally as nations develop assessments and reporting to support the new global biodiversity framework's targets. By considering and incorporating the diverse ways in which society values and benefits from nature, such assessments can help bridge the gap between research and conservation practice and communicate the extent of the biodiversity crisis to the public, fostering broad-based support for transformative change in humanity's relationship to the natural world.  相似文献   
214.
Understanding Managers’ Views of Global Environmental Risk   总被引:1,自引:0,他引:1  
This research investigated managers’ views of two global environmental risks: climate change and loss of biodiversity. The intent was to understand why different managers place varying levels of attention and priority on these issues. The data came from in-depth interviews with 28 senior corporate managers across Canada and a range of sectors, although most were employed in the energy sector. Approximately half had direct environmental responsibilities and half had other management duties. Grounded theory was used to collect and analyze the data. From the results, a theoretical framework was constructed to explain important factors that can influence managers’ mental models of environmental risk. Four factors relevant to managers’ appraisal of the threat of environmental risk include: (1) salience, (2) intrinsic value of nature, (3) knowledge, and (4) perceived resilience of nature. In addition, four factors relevant to managers’ view of the appeal of a particular response strategy were: (1) avoidability, (2) perceived costs and benefits, (3) fairness and equity, and (4) effectiveness. The time horizon for decision making was seen as being important in both portions of the mental model.  相似文献   
215.
We studied geographical and temporal body size trends among 169 adult museum specimens of the Eurasian otter (Lutra lutra) collected in Sweden between 1962 and 2008, whose sex, year of collection, and locality were known. Skull size and body mass increased significantly in relation to the year of collection, and skull size (but not body mass) was significantly and negatively related to latitude, contrasting Bergmann’s rule and the trend found for Norwegian otters. Latitudinal differences in body size between the two countries may be due to differences in food availability. The temporal increase in body size among Swedish otters resembled that observed for Norway otters, though Swedish otters are smaller with respect to their Norwegian counterparts. Latitude and year represent a combination of environmental factors, including ambient temperature in the year of collection as well as the number of days of ice coverage. We replaced the above factors with mean annual temperature or the number of days of ice coverage, and found that each of these factors explains a similar proportion of the variation in body size as did latitude and year. We hypothesize that this temporal increase in body size is related to a combination of factors, including reduced energy expenditure resulting from increasing ambient temperature, and increased food availability from longer ice-free periods.  相似文献   
216.
Filippelli GM 《Chemosphere》2011,84(6):759-766
The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis—the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry.Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand for P far outstrips the geologic replacement for P and few prospects exist for new discoveries of phosphate rock.  相似文献   
217.
Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.  相似文献   
218.
Coastal subsystems formed by interaction of various processes, impacted by natural hazards like tsunami and storms, pose irreversible morphological changes. Vellar estuary, located on the southeast coast of India, with huge sand dunes (of 3-6m height and spread to 560ha) and barrier islands, has undergone extensive morphological changes due to the giant Indian Ocean tsunami that occurred on 26th December 2004. The damage caused by the tsunami has been quantified using extensive field data collected during pre- and post-tsunami periods through Real Time Kinematic GPS (for mapping coastal features and beach profiles) and Geographic Information System (GIS) couple. The tsunami with a wave height as high as 4m not only inundated the entire coastal land up to a maximum of 2km but also eroded the sand dunes and deposited the eroded material at the inlet, which ultimately formed as a vast tidal flat spread over 31ha. The estuary has suffered immensely due to the tsunami especially in terms of (i) loss of natural protection barriers (sand dunes), which made this coastal area more vulnerable to storm attack, and (ii) shallowness of inlet creating hindrance to navigation of fishing vessels. Based on the observations made at Vellar coast and past recovery experiences of tsunami/hurricanes elsewhere in the world, we contend that the morphological loss might take at least two annual cycles to regain its original form and the rebuilding of sand dunes may even take a decade.  相似文献   
219.
The European Union (EU) is an important destination for developing country exports. Has the EU’s commitment to the Kyoto Protocol induced developing countries to reduce their carbon dioxide (CO2) emissions? Our analyses of 136 developing countries from 1981 through 2007 suggests that: developing countries’ export dependence on the EU is associated with CO2 emission reductions post-Kyoto in relation to the pre-Kyoto time period; this also holds for SO2, which, while not covered under Kyoto, is linked with CO2 emission levels; this does not hold for PM10, a pollutant which is not covered under Kyoto and is not directly associated with CO2 emissions related to industrial activities; developing countries’ export dependence on non-EU developed countries and on the rest of the world is not associated with significant reductions in emissions between pre- and post-Kyoto for these pollutants . In sum, even in the absence of binding regulatory mandates, the EU appears to exert market leverage to project its regulatory preferences abroad.  相似文献   
220.
Lepori F  Keck F 《Ambio》2012,41(3):235-246
We review known and hypothesized effects of nitrogen (N) deposition owing to human activities on the chemistry, organisms, and ecosystem processes of remote oligotrophic freshwaters. Acidification is the best-known effect of N deposition on water chemistry, but additional effects include increased nutrient availability and alteration of the balance between N and other nutrients. Our synthesis of the literature, framed in a comprehensive model for the effects of N deposition on natural ecosystems, shows that all these effects can reduce biological diversity and alter ecosystem processes in remote freshwaters. N deposition is projected to grow worldwide in the near future and will interact with other global changes. Present effects on these fragile ecosystems may be only early signs of more radical impacts ahead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号