首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   38篇
  国内免费   75篇
安全科学   149篇
废物处理   29篇
环保管理   30篇
综合类   176篇
基础理论   51篇
污染及防治   65篇
评价与监测   34篇
社会与环境   11篇
灾害及防治   3篇
  2024年   1篇
  2023年   9篇
  2022年   7篇
  2021年   16篇
  2020年   18篇
  2019年   13篇
  2018年   10篇
  2017年   13篇
  2016年   18篇
  2015年   21篇
  2014年   24篇
  2013年   16篇
  2012年   18篇
  2011年   29篇
  2010年   12篇
  2009年   29篇
  2008年   19篇
  2007年   35篇
  2006年   23篇
  2005年   24篇
  2004年   11篇
  2003年   25篇
  2002年   32篇
  2001年   14篇
  2000年   19篇
  1999年   15篇
  1998年   17篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1984年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有548条查询结果,搜索用时 0 毫秒
31.
The dispersion of pollutants from naturally ventilated underground parking garages has been studied in a boundary layer wind tunnel. Two idealized model setups have been analysed, one was simulating pollutant dispersion around an isolated rectangular building and one was representing dispersion in a finite array of idealized building blocks. Flow and dispersion close to modelled ground level emission sources was measured. The results illustrate the complexity of the flow around buildings and provide insight in pollutant transport from ground level sources located directly on building surfaces. As a result, areas critical with respect to high pollutant concentrations could be visualized. Particularly, the results show high concentration gradients on the surface of the buildings equipped with modelled emission sources. Inside the boundary layers on the building walls, a significant amount of pollutants is transported to upwind locations on the surface of the building. The paper documents the potential of physical modelling to be used for the simulation and measurement of dispersion close to emission sources and within complex building arrangements.  相似文献   
32.
The Computational Fluid Dynamics code CFX-TASCflow is used for simulating the wind flow and pollutant concentration patterns in two-dimensional wind-tunnel models of an urban area. Several two-dimensional multiple street canyon configurations are studied corresponding to different areal densities and roof shapes. A line source of a tracer gas is placed at the bottom of one street canyon for modelling street-level traffic emissions. The flow fields resulting from the simulations correspond to the patterns observed in street canyons. In particular and in good agreement with observations, a dual vortex system is predicted for a deep flat-roof street canyon configuration, while an even more complex vortex system is evidenced in the case of slanted-roof square street canyons. In agreement with measurement data, high pollutant concentration levels are predicted either on the leeward or the windward side of the street canyon, depending on the geometrical details of the surrounding buildings.  相似文献   
33.
A measuring campaign was conducted in the street canyon 'Runeberg street' in Helsinki in 1997. Hourly concentrations of carbon monoxide (CO), nitrogen oxides (NOX), nitrogen dioxide (NO2) and ozone (O3) were measured at the street and roof levels, and the relevant hourly meteorological parameters were measured at the roof level. The hourly street level measurements and on-site electronic traffic counts were conducted during the whole year 1997, and roof level measurements were conducted during approximately two months, from 3 March to 30 April in 1997. The Operational Street Pollution Model (OSPM) was used to calculate the street concentrations and the results were compared with the measurements. The overall agreement between measured and predicted concentrations was good for CO and NOx, but the model slightly overestimated the measured concentrations of NO2. The database, which contains all measured and predicted data, is available for a further testing of other street canyon dispersion models.  相似文献   
34.
针对近些年频繁发生的突发性大气污染事件,构建了数字化动态应急预案系统。该系统由基础信息数据库、气象环境模式与健康风险评估系统、数字化动态应急预案三部分组成,并利用地理信息系统将三者有机结合,将事故基本信息、事故发展预测及救援状况直观、动态地展现在系统界面,使应急行动得以及时、高效地展开。实地外场综合应急演习证明,该系统技术路线稳定畅通,运行高效,功能强大,具有较好的可行性和实效性。  相似文献   
35.
以川东北某含硫天然气净化厂为对象,通过分析该净化厂的处理工艺及可能造成泄漏的各种原因,确定了硫化氢泄漏危险较高的生产单元。通过工艺压力、流量、物料组分的比对,选取了脱硫单元原料气和硫磺回收单元酸性气作为模拟泄漏物料。对该厂所在地的气象条件和厂区的地形地貌进行了调查,净化厂当地近5年风速、云量统计表明低风速和多云为主导天气,将D1.5m/s作为模拟硫化氢泄漏扩散的典型气象条件。采用了美国石油学会(API)推荐地面粗糙度长度。运用PHAST软件计算了在典型气象条件下通过3种不同孔径泄漏1 min,5min和30min,形成的立即危及生命或健康(IDLH)范围。在典型气象条件下IDLH的下风向边界距离在41m至1190m范围内,以硫磺回收单元的大孔径泄漏为最远。以小孔泄漏为例模拟并讨论了风速、大气稳定度对硫化氢扩散的影响。为降低H2S泄漏风险提出了在线监测及联锁系统设置的要求,对避免和减少硫化氢中毒伤亡事故具有指导意义。  相似文献   
36.
目前气体扩散模拟研究多采用流体力学的计算方法,分析气体扩散过程中的动力学特性.有限体积、有限元等方法都需要对事故区域整体进行网格划分,计算过程效率无法满足长输管道事故应急跨区域、多气象以及复杂地形的要求.Monte-Carlo方法利用RAMS预测的平均风场,模拟有限气体粒子在风场中的随机行走特性,有效地弥补了计算效率与网格精度冲突所导致的模拟性能下降的缺点.通过HAVEGE方法收集计算的硬件信息熵形成随机源,修正了以往伪随机数问题,增强了Monte-Carlo方法的计算精度.结果表明Monte-Carlo气体扩散模拟研究方法满足了长输管道事故灾害应急决策的需要.  相似文献   
37.
To solve the problems of the difficulty in early leakage monitoring and larger positioning error for urban hazardous chemicals pipelines, the optimized method based on the improved Inverse Transient Analysis (ITA) and Ant Lion Optimizer (ALO) was proposed. Firstly, based on the obtained experiment's results of leakage of natural gas in the non-metallic pipeline, the segment classification method was incorporated into the pressure gradient calculation. The modified method can adapt to the multi-node characteristics of urban pipe networks and help to obtain the preliminary positioning calculation results after optimization. Then the calculation results were embedded in the ITA calculation model. The input parameters of the gas pipeline such as boundary conditions, leakage rate and friction coefficient were used to establish the characteristic linear equations. Then the objective function of the least-squares criterion was defined, and the improved ITA model suitable for leakage detection of urban natural gas pipeline networks was constructed. Finally, the ALO was used to optimize the calculation process of the improved ITA model, and iteratively optimize the optimal friction coefficient and its corresponding minimum objective function (OF) value. As a result, a more precise location of the leakage source was calculated. The validation of the modified method is conducted by comparing the calculated values with the experiment's results. The results show that the method can accurately predict the location where the pipeline leakage occurs. The minimum error is 3.17%. Compared with the traditional ITA, this method not only accelerates the convergence speed of the objective function, but also improves the accuracy of location calculation.  相似文献   
38.
The vulnerability of major-hazard industrial plants to natural hazards has been recognized as an emergent issue whose importance is underlined by the Sendai Framework, established immediately after the Tohoku earthquake of 2011, in Japan. Hence, seismic risk analysis is of paramount importance as testified by the intense research activity that characterized the last years. In this respect, structural health monitoring can represent a valuable tool able to strongly help the decision-making phase. Along this main vein, optical fibers (OFs) represent a class of sensors able to both monitor critical conditions, as leakage of hazardous material, and activate safety barriers, if any. More precisely, optical fibers represent an economic solution, whose characteristics appear particularly suitable for dangerous environments like major-hazard plants. However, investigations relevant to their use for seismic monitoring of chemical/petrochemical plants are rather limited, especially when subject to strong dynamic excitations. As a result, this paper deals with the analysis of optical fiber Bragg gratings (FBGs) applied to bolted flange joints (BFJ) under cyclic loadings. More precisely, two experimental programs, i.e., a cyclic test on a single BFJ and a series of shaking table tests on BFJs of a multicomponent system, demonstrated the effectiveness of the proposed monitoring systems in detecting hazardous conditions and, thus, their potential use in conjunction with safety barriers.  相似文献   
39.
In order to simulate the impact of mesoscale wind fields and to assess potential capability of atmospheric Lagrangian particle dispersion model (LPDM) as an emergency response model for the decision supports, two different simulations of LPDM with the mesoscale prognostic model MM5 (Mesoscale Model ver. 5) were driven. The first simulation of radioactive noble gas ((85)Kr exponent) emitted during JCO accident occurred from 30 September to 3 October 1999 at Tokai, Japan showed that the first arriving short pulse was found in Tsukuba located at 60km away from the accidental area. However, the released radioactive noble gas was transported back to the origin site about 2 days later due to the mesoscale meteorological wind circulation, enhancing the levels of (85)Kr with the secondary peak in Tsukuba. The second simulation of atmospheric dilution factors (the ratio of concentration to the emission rate, chi/Q), during the underground nuclear test (UNT) performed by North Korea showed that high chi/Q moved to the eastward and extended toward southward in accordance with the mesoscale atmospheric circulations generated by mesoscale prognostic model MM5. In comparison with the measurements, the simulated horizontal distribution patterns of (85)Kr during the JCO are well accord with that of observation in Tsukuba such as the existence of secondary peak which is associated with the mesoscale circulations. However, the simulated level of (85)Kr anomaly was found to be significantly lower than the observations, and some interpretations on these discrepancies were described. Applications of LPDM to two mesoscale emergency response dispersion cases suggest the potential capability of LPDM to be used as a decision support model provided accurate emission rate of accident in case of a large accident.  相似文献   
40.
运用Fluent计算软件对北京市丰台区某燃气锅炉排放烟气中NOx的转化和扩散过程进行了数值模拟,定量地研究了烟气深度余热回收技术对燃气锅炉排放NOx在大气中的迁移规律产生的影响,并与Screen 3模型模拟的结果进行了对比.研究发现:烟气深度余热回收技术的应用使NOx的最大落地浓度与烟气直排时相比增加了2.5倍,NOx对本地地表的影响面积增大了15750 m2,增加了本地环境污染的风险.结合燃气锅炉的NOx控制技术提出了缓解局部环境风险的解决方案.结果表明,烟气深度余热回收技术与低氮燃烧技术联用,NOx的控制效率达到70%以上时,在有效提升锅炉热效率的同时,可以缓解由于烟温大幅下降造成的本地环境污染恶化的风险.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号