首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   3篇
  国内免费   27篇
安全科学   45篇
废物处理   18篇
环保管理   20篇
综合类   62篇
基础理论   15篇
污染及防治   33篇
评价与监测   8篇
社会与环境   2篇
  2023年   10篇
  2022年   7篇
  2021年   9篇
  2020年   9篇
  2019年   3篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   13篇
  2014年   14篇
  2013年   14篇
  2012年   13篇
  2011年   6篇
  2010年   3篇
  2009年   11篇
  2008年   6篇
  2007年   16篇
  2006年   1篇
  2005年   11篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有203条查询结果,搜索用时 62 毫秒
151.
By means of a theoretical model, bootstrap resampling and data provided by the International Commission On Large Dams (ICOLD (2003) World register of dams. http://www.icold-cigb.org) we found that global large dams might annually release about 104 ± 7.2 Tg CH4 to the atmosphere through reservoir surfaces, turbines and spillways. Engineering technologies can be implemented to avoid these emissions, and to recover the non-emitted CH4 for power generation. The immediate benefit of recovering non-emitted CH4 from large dams for renewable energy production is the mitigation of anthropogenic impacts like the construction of new large dams, the actual CH4 emissions from large dams, and the use of unsustainable fossil fuels and natural gas reserves. Under the Clean Development Mechanism of the Kyoto Protocol, such technologies can be recognized as promising alternatives for human adaptations to climate change concerning sustainable power generation, particularly in developing nations owning a considerable number of large dams. In view of novel technologies to extract CH4 from large dams, we estimate that roughly 23 ± 2.6, 2.6 ± 0.2 and 32 ± 5.1 Tg CH4 could be used as an environmentally sound option for power generation in Brazil, China and India, respectively. For the whole world this number may increase to around 100 ± 6.9 Tg CH4.  相似文献   
152.
Explosion prevention is vital for process safety and daily life. In practice, inerting is viewed as an ideal method to reach basic explosion prevention as well as to diminish flammability risk in normal operation, storage, and transportation of materials. This study deals with the inerting effect on the explosion range for methane via grey entropy model, comparatively detected under the different inert gases of nitrogen (N2), argon (Ar), and carbon dioxide (CO2), which have various loading inerting concentrations: 10 (90 vol% air), 20 (80 vol% air) and 25 vol% (75 vol% air). The inert influences were determined via the experimental 20-L-apparatus investigations under 1 atm, 30 OC, combined with the grey entropy model, which is one of the most prevailingly used grey system theories for weighting analysis and decision-making of the fire and explosion assessment for practical operations. The results indicated that CO2 had better inerting capacity than the others, as derived from our grey entropy theoretical soft computing calculations. Through the combination of the grey entropy weighting analysis model and the flammability investigations in this study, the concluded decision-making was feasible and useful for the practical applications of inert gases for preventing fire and explosion hazards in relevant processes.  相似文献   
153.
The effect of internal shape of obstacles on the deflagration of premixed methane–air (concentration of 10%) was experimentally investigated in a semi-confined steel pipeline (with a square cross section size of 80 mm × 80 mm and 4 m long). The obstacles used in this study were circular, square, triangular and gear-shaped (4-teeth, 6-teeth and 8-teeth) orifice plates with a blockage ratio of 75%, and the perimeter of the orifice was regarded as a criterion for determining the sharpness of the orifice plate. The overpressure history, flame intensity histories, flame front propagation speed, maximum flame intensity and peak explosion overpressure were analyzed. The explosion in the pipeline can be divided into two stages: initial explosion and secondary explosion. The secondary explosion is caused by recoiled flame. The perimeter is positively related to the intensity of the recoiled flame and the ability of orifice plate to suppress the explosion propagation. In addition, the increase in the perimeter will cause the acceleration of the flame passing through the orifice plate, while after the perimeter of the orifice reaches a certain value, the effect of the increase in perimeter on explosion excitation becomes no obvious. The overpressure (static pressure) downstream of the orifice plate is the result of the combined effect of explosion intensity and turbulence. The increase in perimeter leads to the increase in turbulence downstream of the orifice plate which in turn causes more explosion pressure to be converted into dynamic pressure.  相似文献   
154.
Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management practices, using principles of ecological intensification to enhance efficient and effective nutrient uptake while achieving high yields, was identified as a principal way to achieve reductions in GHG emissions while meeting production demands. Many studies identified through the review involved measurements of GHG emissions over several weeks to a few months, which greatly limit the ability to accurately determine system-level management effects on net global warming potential. The current science indicates: (1) appropriate fertilizer N use helps increase biomass production necessary to help restore and maintain soil organic carbon (SOC) levels; (2) best management practices (BMPs) for fertilizer N play a large role in minimizing residual soil nitrate, which helps lower the risk of increased nitrous oxide (N2O) emissions; (3) tillage practices that reduce soil disturbance and maintain crop residue on the soil surface can increase SOC levels, but usually only if crop productivity is maintained or increased; (4) differences among fertilizer N sources in N2O emissions depend on site- and weather-specific conditions; and (5) intensive crop management systems do not necessarily increase GHG emissions per unit of crop or food production; they can help spare natural areas from conversion to cropland and allow conversion of selected lands to forests for GHG mitigation, while supplying the world's need for food, fiber, and biofuel. Transfer of the information to fertilizer dealers, crop advisers, farmers, and agricultural and environmental authorities should lead to increased implementation of fertilizer BMPs, and help to reduce confusion over the role of fertilizer N on cropping system emissions of GHGs. Gaps in scientific understanding were identified and will require the collaborative attention of agronomists, soil scientists, ecologists, and environmental authorities in serving the immediate and long-term interests of the human population.  相似文献   
155.
欧盟于2020年10月出台了《欧盟甲烷减排战略》,以支撑其中长期温室气体减排目标。该战略共提出了五个领域的24个行动方案。欧盟将油气行业作为重点,设置了两个强制性的政策来完善能源部门的温室气体监测、报告和核查制度,并禁止天然气放空和燃烧。农业领域以加强全生命周期甲烷排放核算、减排技术等方面研究,编制最佳减排实践和技术清单为主要措施。在废弃物管理领域,欧盟将主要修订废弃物管理方面的立法和废水处理标准并加强监管。全球层面,欧盟提出希望联合包括中国在内的主要油气进口国家,推动建立全球性的监测、报告和核查标准,分享其甲烷超级排放源探测的卫星数据等措施。我国提出2060碳中和愿景后,下一阶段温室气体减排将会从能源相关二氧化碳减排为主扩展到全部温室气体减排。建议我国和欧盟在甲烷减排方面开展广泛合作,借鉴欧盟的经验,尽快制定我国甲烷减排近期、中期、远期目标和行动计划,推广甲烷减排技术,加强科学研究和技术研发,探索在国家碳市场交易体系中纳入甲烷等非二氧化碳气体的时机和方案,鼓励大型能源企业加入国际甲烷减排倡议以提高能力,逐步完善我国甲烷减排相关政策和制度环境,打造我国在低碳领域的经济和技术竞争力。  相似文献   
156.
Methane production from low-strength wastewater (LSWW) is generally difficult because of the low metabolism rate of methanogens. Here, an up-flow biofilm reactor equipped with conductive granular graphite (GG) as fillers was developed to enhance direct interspecies electron transfer (DIET) between syntrophic electroactive bacteria and methanogens to stimulate methanogenesis process. Compared to quartz sand fillers, using conductive fillers significantly enhanced methane production and accelerated the start-up stage of biofilm reactor. At HRT of 6 h, the average methane production rate and methane yield of reactor with GG were 0.106 m3/(m3·d) and 74.5 L/kg COD, which increased by 34.3 times and 22.4 times respectively compared with the reactor with common quartz sand fillers. The microbial community analysis revealed that methanogens structure was significantly altered and the archaea that are involved in DIET (such as Methanobacterium) were enriched in GG filler. The beneficial effects of conductive fillers on methane production implied a practical strategy for efficient methane recovery from LSWW.
  相似文献   
157.
The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater. High concentration sulfate of this wastewater was the main refractory factor. UASB recovery performance after a few days of inflow arrest was studied. The optimal UASB operating conditions for practical application were determined. Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.  相似文献   
158.
Li K  Gong Y  Song W  He G  Hu Y  Tian C  Liu X 《Chemosphere》2012,88(1):140-143
To assess the effects of nitrogen (N) deposition on greenhouse gas (GHG) fluxes in alpine grassland of the Tianshan Mountains in central Asia, CH4, CO2 and N2O fluxes were measured from June 2010 to May 2011. Nitrogen deposition tended to significantly increase CH4 uptake, CO2 and N2O emissions at sites receiving N addition compared with those at site without N addition during the growing season, but no significant differences were found for all sites outside the growing season. Air temperature, soil temperature and water content were the important factors that influence CO2 and N2O emissions at year-round scale, indicating that increased temperature and precipitation in the future will exert greater impacts on CO2 and N2O emissions in the alpine grassland. In addition, plant coverage in July was also positively correlated with CO2 and N2O emissions under elevated N deposition rates. The present study will deepen our understanding of N deposition impacts on GHG balance in the alpine grassland ecosystem, and help us assess the global N effects, parameterize Earth System models and inform decision makers.  相似文献   
159.
160.
Solid waste characteristics and landfill gas emission rate in tropical landfill was investigated in this study. The experiment was conducted at a pilot landfill cell in Thailand where fresh and two-year-old wastes in the cell were characterized at various depths of 1.5, 3, 4.5 and 6 m. Incoming solid wastes to the landfill were mainly composed of plastic and foam (24.05%). Other major components were food wastes (16.8%) and paper (13.3%). The determination of material components in disposed wastes has shown that the major identifiable components in the wastes were plastic and foam which are resistant to biodegradation. The density of solid waste increased along the depth of the landfill from 240 kg m−3 at the top to 1,260 kg m−3 at the bottom. Reduction of volatile solids content in waste samples along the depth of landfill suggests that biodegradation of solid waste has taken place to a greater extent at the bottom of the landfill. Gas production rates obtained from anaerobic batch experiment were in agreement with field measurements showing that the rates increased along the depth of the landfill cell. They were found in range between 0.05 and 0.89 l kg−1 volatile solids day−1. Average emission rate of methane through the final cover soil layer was estimated as 23.95 g−2day−1 and 1.17 g−2day−1 during the dry and rainy seasons, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号