首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   2篇
  国内免费   80篇
安全科学   18篇
废物处理   9篇
环保管理   58篇
综合类   233篇
基础理论   65篇
污染及防治   154篇
评价与监测   55篇
社会与环境   8篇
  2023年   11篇
  2022年   17篇
  2021年   12篇
  2020年   15篇
  2019年   13篇
  2018年   14篇
  2017年   10篇
  2016年   19篇
  2015年   37篇
  2014年   28篇
  2013年   26篇
  2012年   28篇
  2011年   46篇
  2010年   31篇
  2009年   44篇
  2008年   54篇
  2007年   44篇
  2006年   30篇
  2005年   16篇
  2004年   14篇
  2003年   13篇
  2002年   15篇
  2001年   8篇
  2000年   19篇
  1999年   7篇
  1998年   1篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有600条查询结果,搜索用时 11 毫秒
221.
刘岚昕 《环境保护科学》2012,38(3):47-49,63
以下辽河平原旱田土壤为研究对象,通过对土壤中铵态氮的吸附动力学过程进行定量分析,预测铵态氮流失及其对地下水环境的潜在影响。结果表明:粒径<0.001mm粘粒含量、pH值、有机质含量与铵态氮的平衡吸附量呈正相关,大民屯地区铵态氮对地下水造成污染的潜力最大。  相似文献   
222.
To analyze the effect of nutrient addition on small- and medium-sized soil arthropod communities in a Stipa Baikal meadow grassland, a nitrogen (N) and phosphorus (P) addition experiment was designed in the Stipa Baikal meadow grassland at Ewenki Banner, Hulunbeier City, Inner Mongolia, China in 2010. Changes in the structure and diversity of soil arthropod communities and their relationship with environmental factors were studied. Soil arthropod samples were collected during the forage greening (May), growth (August), and yellowing (end of September) periods in 2019. The results showed that: (1) compared to the control sample, N-added and NP-added samples had higher number of soil arthropods by 1.38 and 1.15 times, respectively, and an increase of 28.57% and 21.43% in the number of soil arthropod groups. The numbers of individual as well as groups of soil arthropods tended to increase with P addition; however, this response did not reach a significant level. (2) The water and heat conditions during the vegetation growth period in the test area were more suitable for the development of soil fauna communities. (3) The redundancy analysis (RDA) results further indicated that the community composition of soil fauna is mainly regulated by pH and plant evenness, and soil pH is particularly important in mediating changes in small- and medium-sized soil fauna communities. This study suggests that long-term nutrient addition has a positive impact on small- and medium-sized soil arthropod communities by changing plant evenness and soil pH, and the contribution of soil pH is greater than that of plant evenness. © 2022 Authors. All rights reserved.  相似文献   
223.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   
224.
This study proposed an integrated biogeochemical modelling of nitrogen loads from anthropogenic and natural sources in Japan. Firstly, the nitrogen load (NL) from different sources such as crop, livestock, industrial plant, urban and rural resident was calculated by using datasets of fertilizer utilization, population distribution, land use map, and social census. Then, the nitrate leaching from soil layers in farmland, grassland and natural conditions was calculated by using a terrestrial nitrogen cycle model (TNCM). The Total Runoff Integrating Pathways (TRIP) was used to transport nitrogen from natural and anthropogenic sources through river channels, as well as collect and route nitrogen to the river mouths. The forcing meteorological and hydrological data is a 30-year (1976–2005) dataset for Japan which were obtained by the land surface model, Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO). For the model validation, we collected total nitrogen (TN) concentration data from 59 rivers in Japan. As a comparison result, calculated TN concentration values were in good agreement with the observed ones, which shows the reliability of the proposed model. Finally, the TN loads from point and nonpoint sources were summarized and evaluated for 59 river basins in Japan. The proposed modelling framework can be used as a tool for quantitative evaluation of nitrogen load in terrestrial ecosystems at a national scale. The connection to land use and climate data provides a possibility to use this model for analysis of climate change and land use change impacts on hydrology and water quality.  相似文献   
225.
Aquatic plant duckweed has remarkable potential in nutritional water purification and starch accumulation; at present, it has received increasing attention. This study aimed to investigate the ability of duckweed in nutrient recovery from micro-polluted surface water; further, the starch accumulation capacity of duckweed was evaluated. The results showed that duckweed can achieve better depth treatment of the micro-polluted surface water, within 1-day treatment, by duckweed. Ammonia nitrogen and total phosphorus status of Class V and worse than class V water was improved to a superior level; moreover, the nitrogen and phosphorus removal rates were 98.5% and 82.9%, respectively. In addition, duckweed can rapidly accumulate starch during water treatment. The starch content of duckweed was 28.38% and 21.57% (dry weight) in Class V and worse than class V wastewater after 3 days of treatment, respectively, and reached 52.15% and 49.58% on day 15. Moreover, additional carbon dioxide (CO2) supplementation promoted the starch production. The starch content increased by 55.7% compared with that of control, and the average starch accumulation rate increased by 2.72 times in 3 days. Therefore, duckweed can not only rapidly purify micro-polluted water, but also accumulate a large amount of starch. This study forms the basis for wastewater treatment and post-treatment utilization of duckweed biomass. © 2018 Science Press. All rights reserved.  相似文献   
226.
Agricultural crops can be either a source or a sink of ammonia (NH3). Most NH3 exchange models developed so far do not account for the plants nitrogen (N) metabolism and use prescribed compensation points. We present here a leaf-scale simplified NH3 stomatal compensation point model related to the plants N and carbon (C) metabolisms, for C3 plants. Five compartments are considered: xylem, cytoplasm, apoplasm, vacuole and sub-stomatal cavity. The main processes accounted for are the transport of ammonium (NH4+), NH3 and nitrate (NO3) between the different compartments, NH4+ production through photorespiration and NO3 reduction, NH4+ assimilation, chemical and thermodynamic equilibriums in all the compartments, and stomatal transfer of NH3.The simulated compensation point is sensitive to paramaters related to the apoplastic compartment: pH, volume and active transport rate. Determining factors are leaf temperature, stomatal conductance and NH4+ flux to the leaf. Atmospheric NH3 concentration seem to have very little effect on the compensation point in conditions of high N fertilization. Comparison of model outputs to experimental results show that the model underestimates the NH3 compensation point for high N fertilization and that a better parametrisation of sensitive parameters especially active trasport rate of NH4+ may be required.  相似文献   
227.
Management plans for the Mississippi River Basin call for reductions in nutrient concentrations up to 40% or more to reduce hypoxia in the Gulf of Mexico (GOM), while at the same time the government is considering new farm subsidies to promote development of biofuels from corn. Thus there are possibilities of both increasing and decreasing river nutrients depending on national priorities. River flow rates which also influence the extent of hypoxia on the shelf may be altered by global climate change. We have therefore developed a series of simulations to forecast ecosystem response to alterations in nutrient loading and river flow. We simulate ecosystem response and hypoxia events using a linked model consisting of multiple phytoplankton groups competing for nitrogen, phosphorus and light, zooplankton grazing that is influenced by prey edibility and stoichiometry, sub-pycnocline water-column metabolism that is influenced by sinking fecal pellets and algal cells, and multi-element sediment diagenesis. This model formulation depicts four areas of increasing salinity moving westward away from the Mississippi River point of discharge, where the surface mixed layer, four bottom layers and underlying sediments are represented in each area. The model supports the contention that a 40% decrease in river nutrient will substantially reduce the duration and areal extent of hypoxia on the shelf. But it also suggests that in low and middle salinity areas the hypoxia response is saturated with respect to nutrients, and that in high salinity regions small increases in nutrient and river flow will have disproportionally large effects on GOM hypoxia. The model simulations also suggest that river discharge is a stronger factor influencing hypoxia than river nutrients in the Mississippi River plume. Finally, the model simulations suggest that primary production in the low salinity regions is light limited while primary production in the higher salinity zones is phosphate limited during the May to October period when hypoxia is prevalent in the Mississippi River plume.  相似文献   
228.
Anammox enrichment from different conventional sludges   总被引:23,自引:0,他引:23  
Chamchoi N  Nitisoravut S 《Chemosphere》2007,66(11):2225-2232
Three sets of sequencing batch reactor (SBR) were used for Anammox enrichment from conventional sludges including upflow anaerobic sludge blanket, activated sludge, and anaerobic digestion sludge. After four months of operation, the Anammox activity occurred in all reactors allowing continuous removal of ammonium and nitrite. The morphology of the cultivated Anammox sludge was observed using scanning electron microscope. The photographs showed that the obtained culture was mostly spherical in shape, presumably Anammox culture. There were also filamentous-like bacteria co-existing in the system. Fluorescence in situ hybridization (FISH) analysis using 16S rRNA targeting oligonucleotide probes PLA46 and Amx820 showed that the dominant population developed in all SBRs was hybridized with both PLA46 and Amx820 gene probes. It means that the cultivated biomass in all SBRs was classified in the group of Planctomycetales bacteria with respect to the anaerobic ammonium-oxidizing bacteria, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis. Numerous time sequences were tested in this experiment. The shortest workable reaction time was found in the range from 5 to 7 h. Good quiescence of sludge was obtained at 30 min of settle period followed by a discharge period of 15 min. A long-term performance showed a near perfect removal of nitrite based on the influent NO2(-)-N concentration of 50-70 mg l(-1). The maximum ammonia removal efficiency was 80% with the influent NH4(+)-N concentration of 40-60 mg l(-1). It is, therefore, concluded that Anammox cultivation from conventional sludges was highly possible under control environment within four months.  相似文献   
229.
主要研究低压环境下,压力、温度对氮气和氧气分别在航空煤油中溶解度的影响。实验装置包括除气装置、吸气平衡装置以及称重装置。由实验结果可知:压力在0MPa~0.1MPa,温度为293.15K,303.15K,313.15K时,氮气和氧气分别在航空煤油中的溶解度与压力呈线性关系、与温度呈非线性关系;氮气在航空煤油中的溶解度受压力的影响比氧气的小,受温度的影响比氧气的大;氧气在航空煤油中的溶解度比氮气的大。  相似文献   
230.
Here we present an uncertainty analysis of NH3 emissions from agricultural production systems based on a global NH3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH3 emission from agricultural systems is 27–38 (with a mean of 32) Tg NH3-N yr−1, N fertilizer use contributing 10–12 (11) Tg yr−1 and livestock production 16–27 (21) Tg yr−1. Most of the emissions from livestock production come from animal houses and storage systems (31–55%); smaller contributions come from the spreading of animal manure (23–38%) and grazing animals (17–37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH3 emission comprise four parameters (N excretion rates, NH3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号